ACPSO-BP神经网络在矿井突水水源判别中的应用
作者:
基金项目:

国家自然科学基金资助项目(51604091,51474094);河南省科技攻关计划项目(182102310743);河南省高等学校重点科研项目(18A440010)。


Application of ACPSO-BP neural network in discriminating mine water inrush source
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    矿井多年来的连续开采使各含水层水质特征变得更加复杂、更为接近,应用经典数学方法难以建立精确的判别模型,使用具有非线性映射功能的BP神经网络可以克服以上问题,但其仍然具有易陷入局部最优和收敛速度慢缺点。通过将"早熟"判断机制、Tent混沌映射以及权重自适应调整策略引入粒子群算法中,建立基于自适应混沌粒子群算法和BP(ACPSO-BP)神经网络突水水源判别模型,应用结果表明:与BP神经网络模型、基于标准粒子群算法和BP(SPSO-BP)神经网络模型相比,ACPSO-BP神经网络模型具有收敛速度快、精度高和泛化能力强的特点。

    Abstract:

    The continuous mining in the coal mine has made the water quality characteristics of each aquifer become more complex and more similar, and it is difficult to establish a precise discriminating model by using classical mathematical methods. The BP neural network with nonlinear mapping function can overcome the above problems, but it still has the disadvantage of being easy to fall into local optimization and having slow convergence speed. We introduced the "premature" judgment mechanism, Tent chaos map and adaptive weight adjusting strategy into particle swarm optimization algorithm, establishing a water inrush discrimination model on the basis of adaptive chaos particle swarm optimization algorithm and BP(ACPSO-BP) neural network. The application results show that compared with the BP neural network model and the model based on standard particle swarm algorithm and BP(SPSO-BP) neural network, the ACPSO-BP neural network model has faster convergence speed, higher accuracy and stronger generalization.

    参考文献
    [1] 杨永国, 黄福臣. 非线性方法在矿井突水水源判别中的应用研究[J]. 中国矿业大学学报, 2007,36(3):283-286.YANG Yongguo, HUANG Fuchen. Water source determination of mine inflow based on nonlinear method[J]. Journal of China University of Mining and Technology, 2007, 36(3):283-286. (in Chinese)
    [2] 朱玮,邓红卫,吴彦霖. 基于Modpath的矿井突水应用[J]. 重庆大学学报,2015,38(6):31-36.ZHU Wei, DENG Hongwei, WU Yanlin. Research on mine water inrush based on Modpath[J]. Journal of Chongqing University, 2015,38(6):31-36. (in Chinese)
    [3] 王心义, 赵伟, 刘小满, 等. 基于熵权-模糊可变集理论的煤矿井突水水源识别[J].煤炭学报, 2017, 42(9):2433-2439.WANG Xinyi, ZHAO Wei, LIU Xiaoman, et al. Identification of water inrush source from coalfield based on entropy weight-fuzzy variable set theory[J]. Journal of China Coal Society, 2017, 42(9):2433-2439.(in Chinese)
    [4] 杨海军, 王广才. 煤矿突水水源判别与水量预测方法综述[J]. 煤田地质与勘探, 2012, 40(3):48-54.YANG Haijun, WANG Guangcai. Summarization of methods of distinguishing sources and forecasting inflow of water inrush in coal mines[J]. Coal Geology & Exploration, 2012, 40(3):48-54.(in Chinese)
    [5] Krose B, Smagt P V D. An introduction to neural networks[M]. Amsterdam, Netherlands:The University of Amsterdam,1996.
    [6] Galushkin A I. Neural networks theory[M]. Fairmont, USA:Springer, 2007.
    [7] 徐星, 郭兵兵, 王公忠. 人工神经网络在矿井多水源识别中的应用[J]. 中国安全生产科学技术, 2016, 12(1):181-185.XU Xing, GUO Bingbing, WANG Gongzhong. Application of artificial neural network in recognition mine multiple water sources[J]. Journal of Safety Science and Technology, 2016, 12(1):181-185. (in Chinese)
    [8] Holland J H. Adaptation in natural and artificialsystems:An introductory analysis with applications to biology, control, and artificial intelligence[M]. 2nd ed. Cambridge:MIT Press, 1992.
    [9] Boris P L, Jessica S C. A deterministic annular crossover genetic algorithmoptimisation for the unit commitment problem[J]. Expert Systems with Applications, 2011,38(6):6523-6529.
    [10] 徐星, 田坤云, 郑吉玉. 基于遗传BP神经网络模型的矿井突水水源判别[J]. 工业安全与环保, 2017,43(11):21-24.XU Xing, TIAN Kunyun, ZHENG Jiyu. Discriminating mine water inrush source based on genetic BP neural network model[J]. Industrial Safety and Environmental Protection, 2017, 43(11):21-24.(in Chinese)
    [11] Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems[C]//Proceedings of the Euro-International Symposium on Computational Intelligence 2002.[S.l.]:IOS Press, 2002.
    [12] Hsieh S T, Sun T Y, Liu CC, et al. Solving large scale global optimization using improved particle swarm optimizer[C]//2008 IEEE Congress on Evolutionary Computation, June 1-6, 2008, Hongkong, China.[S.l.]:IEEE Press, 2008:1777-1784.
    [13] Suran de Silva. Cisco 6500 FIB forwarding capacities[EB/OL].[2017-12-08] http://www.nanog.org/mtg-0702/presentations/fib-desilva.pdf.
    [14] 徐星, 李垣志, 张文勇, 等. MPSO-BP模型在矿井突水水源判别中的应用[J]. 自然灾害学报, 2017, 26(5):140-148.XU Xing, LI Yuanzhi, ZHANG Wenyong, et al. Application of MPSO-BP model in discriminating mine water inrush source[J]. Journal of Natural Disasters, 2017, 26(5):140-148.(in Chinese)
    [15] Pan W T. A new Fruit Fly Optimization Algorithm:Taking the financial distress model as anexample[J]. Knowledge-Based Systems, 2012, 26(2)69-74.
    [16] Kennedy J, Eberhart R. Particle swarm optimization[C/OL]//Proceedings of IEEE International Conference on Neural Networks, Nov 27-Dec 1, 1995, Perth, WA, Australia.[S.l.]:IEEE, 1995:1942-1948.[2017-12-20]. paperuri:(f3814db83e1d2b7eae68a86d78db2241). DOI:10.1109/ICNN.1995.488968.
    [17] Taylor D E, Turner J S. C1assBench:a packetclassificationbenchmark[J]. IEEE/ACM Transactions on Nehvorking, 2007, 15(3):499-511.
    [18] 杨琳. 基于自适应混沌粒子群算法的多目标无功优化研究[D]. 吉林:东北电力大学, 2011.YANG Lin. Multi-objective reactive power optimization based on adaptive chaos particle swarm optimizationalgorithm[D]. Jilin:Northeast Dianli University, 2011.(in Chinese)
    [19] 胡方霞, 谢志江, 岳茂雄. 混沌粒子群优化模糊聚类的旋转机械故障诊断[J]. 重庆大学学报, 2011, 34(6);26-30.HU Fangxia, XIE Zhijiang, YUE Maoxiong. Fault diagnosis of rotating machinery based on fuzzy clustering optimized by chaos embedded particle swarm optimization[J]. Journal of Chongqing University, 2011, 34(6):26-30.(in Chinese)
    [20] 张许良, 张子戍, 彭苏萍. 数量化理论在矿井突(涌)水水源判别中的应用[J]. 中国矿业大学学报, 2003, 32(3):251-254.ZHANG Xuliang, ZHANG Zixu, PENG Suping. Application of the second theory of quantification in identifying gushing water sources of coal mines[J]. Journal of China University of Mining & Technology, 2003, 32(3):251-254. (in Chinese)
    [21] 鲁金涛, 李夕兵, 宫凤强, 等. 基于主成分分析与Fisher判别分析法的矿井突水水源识别方法[J]. 中国安全科学学报, 2012, 22(07):109-115.LU Jintao, LI Xibing, GONG Fengqiang, et al. Recognizing of mine water inrush sources based on principal components analysis and fisher discrimination analysis method[J]. Journal of Safety Science and Technology, 2012, 22(07):109-115.(in Chinese)
    [22] 聂凤琴,许光泉,关维娟, 等. 马氏距离判别模型在矿井突水水源判别中应用[J]. 地下水,2013,35(06):41-42.NIE Fengqin, XU Guangquan, GUAN Weijuan, et al. Application of Ma Distance discriminant model on water source identification of mine water inrush[J]. Ground Water, 2013, 35(06):41-42.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐星,李垣志,田坤云,张瑞林. ACPSO-BP神经网络在矿井突水水源判别中的应用[J].重庆大学学报,2018,41(6):91-101.

复制
分享
文章指标
  • 点击次数:900
  • 下载次数: 848
  • HTML阅读次数: 464
  • 引用次数: 0
历史
  • 收稿日期:2018-01-05
  • 在线发布日期: 2018-07-10
文章二维码