基于瓦斯渗透异性的煤层抽采钻孔合理布置
作者:
基金项目:

国家自然科学基金(41772163);河南省高校科技创新团队支持计划资助(17IRTSTHN030);河南省教育厅高等学校重点科研项目(15A440012)。


Reasonable layout of drainage boreholes based on anisotropic permeability in coal seam
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于煤层瓦斯渗透各向异性特征,在九里山煤矿煤层进行了180 d井下瓦斯抽采有效影响半径测试,同时,建立煤层瓦斯各向渗透异性的气-固耦合渗流模型,数值模拟了瓦斯抽采有效半径的时变规律,分析了抽采钻孔的合理布置方式。研究结果表明:煤层平行层理方向的渗透率是垂直层理方向的渗透率的2.6倍左右。煤层钻孔不同方向有效抽采半径均随抽采时间增加而增大,且与预抽时间满足幂指数关系,数值模拟结果与井下现场测量一致。有效抽采距离在平行层理方向最大,垂直层理方向最小,有效抽采区域为椭圆形。据此确定了不同预抽时间煤层抽采钻孔的合理间距,并针对九里山煤矿二1煤层计算分析了预抽时间与百米钻孔数的关系。

    Abstract:

    Coal seam degasification by in-seam drilling borehole is one of the popular techniques for coal mine methane (CMM) control. Generally, the more borehole numbers for a specific drainage area, the shorter drainage time but the higher drainage cost. In order to resolve the contradiction between borehole numbers and drainage duration, in-situ tests of effective gas drainage radius were conducted continuously in an anisotropic coal seam for 180 days at Jiulishan coal mine in China, and coal permeability was measured associated with bedding and cleat structures, and then gas-solid coupled seepage model was built to simulate the change rules of effective drainage radius in an anisotropy coal seam using finite-element based Comsol package. The results indicate that the coal permeability parallel to the bedding plane in butt cleat direction is 2.6 times as high as that perpendicular to the bedding plane. And effective drainage radius parallel to the bedding plane in butt cleat direction will get much larger than that perpendicular to the bedding plane with the increase of drainage duration and shows exponential relationship with gas pre-extraction time. The numerical results of simulated tests are consistent with those of field tests. Based on numerical results, the ellipse influence area of borehole in an anisotropic coal seam is proposed, and the relativity of effective drainage radius with drainage time is found. On the basis of these findings the proper in-seam borehole arrangements for a specific mining panel at different drainage duration are determined.

    参考文献
    [1] 申宝宏, 刘见中, 张泓. 我国煤矿瓦斯治理的技术对策[J]. 煤炭学报, 2007, 32(7):673-679.SHEN Baohong, LIU Jianzhong, ZHANG Hong. The technical measures of gas control in China coal mines[J]. Journal of China Coal Society, 2007, 32(7):673-679. (in Chinese)
    [2] 程远平, 俞启香, 周红星, 等. 煤矿瓦斯治理"先抽后采"的实践与作用[J]. 采矿与安全工程学报, 2006, 23(4):389-392.CHENG Yuanping, YU Qixiang, ZHOU Hongxing,et al. Practice and effectiveness of "draining gas before coal mining" to prevent gas from bursting[J]. Journal of Mining & Safety Engineering, 2006, 23(4):389-392. (in Chinese)
    [3] 刘军, 王兆丰, 李学臣, 等. 消除矿井瓦斯抽采空白带方法的研究[J]. 煤炭科学技术, 2012, 40(12):59-61.LIU Jun, WANG Zhaofeng, LI Xuechen, et al. Study on the methods of eliminating blank zone of mine gas drainage[J]. Coal Science and Technology, 2012, 40(12):59-61. (in Chinese)
    [4] 王伟有, 汪虎. 基于COMSOL的瓦斯抽采有效半径数值模拟[J]. 矿业工程研究, 2012, 27(2):40-43.WANG Weiyou, WANG Hu. Research on the gas extraction effective radius by simulation based on COMSOL multiphysics[J]. Mineral Engineering Research, 2012, 27(2):40-43. (in Chinese)
    [5] Li H Y, Shimada S, Zhang M. Anisotropy of gas permeability associated with cleat pattern in a coal seam of the Kushiiro coalfield in Japan[J]. Environmental Geology, 2004, 47(1):45-50.
    [6] 黄学满. 煤结构异性对瓦斯渗透特性影响的实验研究[J].矿业安全与环保, 2012, 39(2):1-3.HUANG Xueman. Experimental study on influence of structural anisotropy of coal upon gas permeability[J]. Mining Safety & Environmental Protection, 2012, 39(2):1-3. (in Chinese)
    [7] 潘荣锟, 程远平, 董骏, 等. 不同加卸载下层理裂隙煤体的渗透特性研究[J]. 煤炭学报, 2014, 39(3):473-477.PAN Rongkun, CHENG Yuanping, DONG Jun, et al. Research on permeability characteristics of layered natural coal under different loading and unloading[J]. Journal of China Coal society, 2014, 39(3):473-477. (in Chinese)
    [8] Laubach S E, Marrett R A, Olson J E, et al. Characteristics and origins of coal cleat:A review[J]. International Journal of Coal Geology, 1998, 35(1/2/3/4):175-207.
    [9] 陈金刚, 秦勇, 宋全友,等. 割理方向与煤层气抽放效果的关系及预测模型[J]. 中国矿业大学学报, 2003, 32(3):223-226.CHEN Jingang, QIN Yong, SONG Quanyou, et al. Coupling relationship between direction of coalbed cleat and methane drainage effect and its prediction model[J]. Journal of China University of Mining & Technology, 2003, 32(3):223-226. (in Chinese)
    [10] 傅雪海, 秦勇, 姜波, 等. 煤割理压缩实验及渗透率数值模拟[J]. 煤炭学报, 2001, 26(6):573-577.FU Xuehai, QIN Yong, JIANG Bo, et al. Compress experiment of coal cleat and mathematical simulation of coal reservoir permeability[J]. Journal of China Coal Society, 2001, 26(6):573-577. (in Chinese)
    [11] 刘洪林, 王红岩, 张建博. 煤储层割理评价方法[J]. 天然气工业, 2000, 20(4):27-29.LIU Honglin, WANG Hongyan, ZHANG Jianbo. Evaluation method of cleats in coal reservoir bed[J]. Natural Gas Industry, 2000, 20(4):27-29. (in Chinese)
    [12] Koenig P A, Stubbs P B. Interference testing of a coal-bed methane reservoir[C]//SPE Unconventional Gas Technology Symposium, May 18-21, 1986, Louisville, Kentucky.[S.l.]:Society of Petroleum Engineers, 1986.
    [13] WANG S G, Elsworth D, Liu J S. Permeability evolution in fractured coal:The roles of fracture geometry and water-content[J]. International Journal of Coal Geology, 2011, 87(1):13-25.
    [14] Lin H F, Huang M, Li S G, et al. Numerical simulation of influence of Langmuir adsorption constant on gas drainage radius of drilling in coal seam[J]. International Journal of Mining Science and Technology, 2016, 26(3):377-382.
    [15] 王宏图, 江记记, 王再清, 等. 本煤层单一顺层瓦斯抽采钻孔的渗流场数值模拟[J]. 重庆大学学报, 2011, 34(4):24-29.WANG Hongtu, JIANG Jiji, WANG Zaiqing, et al. Numerical simulation of seepage field of gas extraction drilling of single bedding of mining-coal bed[J]. Journal of Chongqing University, 2011, 34(4):24-29. (in Chinese)
    [16] 梁冰, 袁欣鹏, 孙维吉. 本煤层顺层瓦斯抽采渗流耦合模型及应用[J]. 中国矿业大学学报, 2014, 43(2):208-213.LIANG Bing, YUAN Xinpeng, SUN Weiji. Seepage coupling model of in-seam gas extraction and its applications[J]. Journal of China University of Mining & Technology, 2014, 43(2):208-213. (in Chinese)
    [17] 尹光志, 李铭辉, 李生舟, 等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报, 2013, 38(4):535-541.YIN Guangzhi, LI Minghui, LI Shengzhou, et al. 3D numerical simulation of gas drainage from boreholes based on solid-gas coupling model of coal containing gas[J]. Journal of China Coal Society, 2013, 38(4):535-541. (in Chinese)
    [18] 鲁义, 申宏敏, 秦波涛, 等. 顺层钻孔瓦斯抽采半径及布孔间距研究[J]. 采矿与安全工程学报, 2015, 32(1):156-156.LU Yi, SHEN Hongmin, QIN Botao, et al. Gas drainage radius and borehole distance along seam[J]. Journal of Mining & Safety Engineering, 2015, 32(1):156-156. (in Chinese)
    [19] 季淮君, 李增华, 杨永良, 等. 基于瓦斯流场的抽采半径确定方法[J]. 采矿与安全工程学报, 2013, 30(6):917-921.JI Huaijun, LI Zenghua, YANG Yongliang, et al. Drainage radius measurement based on gas flow field[J]. Journal of Mining & Safety Engineering, 2013, 30(6):917-921. (in Chinese)
    [20] 余陶, 卢平, 孙金华, 等. 基于钻孔瓦斯流量和压力测定有效抽采半径[J]. 采矿与安全工程学报, 2012, 29(4):596-600.YU Tao, LU Ping, SUN Jinhua, et al. Measurement of effective drainage radius based on gas flow and pressure of boreholes[J]. Journal of Mining & Safety Engineering, 2012, 29(4):596-600. (in Chinese)
    [21] 岳高伟,王宾宾,曹汉生,等.结构异性煤层顺层钻孔方位对有效抽采半径的影响[J].煤炭学报,2017,42(Suppl1):138-147.YUE Gaowei,WANG Binbin,CAO Hansheng,et al.Influence of effective drainage radius by borehole orientation along seam with anisotropic permeability[J].Journal of China Coal Society,2017,42(Suppl1):138-147. (in Chinese)
    [22] 魏国营, 秦宾宾. 煤体钻孔瓦斯有效抽采半径判定技术[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(6):754-758.WEI Guoying, QIN Binbin. Technology for determining effective drainage radius of coal seam drill hole[J]. Journal of Liaoning Technical University(Natural Science), 2013, 32(6):754-758. (in Chinese)
    [23] 岳高伟, 王辉, 赵宇, 等. 结构异性煤体渗透率特性[J]. 科技导报, 2015, 33(12):50-55.YUE Gaowei, WANG Hui, ZHAO Yu, et al. Permeability characteristics of structurally anisotropic coal[J]. Science & Technology Review, 2015, 33(12):50-55. (in Chinese)
    [24] 魏建平, 李明助, 王登科, 等. 煤样渗透率围压敏感性试验研究[J]. 煤炭科学技术, 2014, 42(6):76-80.WEI Jianping, LI Mingzhu, WANG Dengke, et al. Experimental research on sensibility of coal samples permeability under confining pressure[J]. Coal Science and Technology, 2014, 42(6):76-80. (in Chinese)
    [25] 王猛. 本煤层钻孔抽采防突效果影响因素研究[D]. 焦作:河南理工大学, 2015.WANG Meng. Influential factors research on the drilling extraction of outburst prevention effects in the coal seam[D]. Jiaozuo:Henan Polytechnic University, 2015. (in Chinese)
    [26] 赵继展, 韩保山, 陈志胜, 等. 煤层瓦斯含量计算方法探讨[J]. 中国煤田地质, 2006, 18(5):22-24.ZHAO Jizhan, HAN Baoshan, CHEN Zhisheng, et al. Discussion on coal bed methane content estimation method[J]. Coal Geology of China, 2006, 18(5):22-24. (in Chinese)
    [27] Klinkenberg L J. The permeability of porous media to liquids and gases[C]//Drilling and Production Practice, January 1, 1941, New York. New York:American Petroleum Institute, 1941:200-213.
    [28] Saghafi A, Faiz M, Roberts D. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia[J]. International Journal of Coal Geology, 2007, 70(1/2/3):240-254.
    [29] Hu G Z, Wang H T, Fan X G, et al. Mathematical model of coalbed gas flow with Klinkenberg effects in multi-physical fields and its analytic solution[J]. Transport in Porous Media, 2009, 76(3):407-420.
    [30] Wu D M, Wang H F, Ge C G, et al. Research on forced gas draining from coal seams by surface well drilling[J]. Mining Science and Technology, 2011, 21(2):229-232.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾春林,岳高伟,王宾宾,霍留鹏.基于瓦斯渗透异性的煤层抽采钻孔合理布置[J].重庆大学学报,2018,41(6):102-114.

复制
分享
文章指标
  • 点击次数:732
  • 下载次数: 1086
  • HTML阅读次数: 571
  • 引用次数: 0
历史
  • 收稿日期:2018-01-10
  • 在线发布日期: 2018-07-10
文章二维码