College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, P. R. China;Beijing Daheng Image Vision Co. Ltd, Beijing 100085, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
Automatic detection of retinal image exudation is helpful for early diagnosis of diabetic retinopathy. According to the decision tree theory, we propose a retinal intrusion detection method based on color fundus images and test it with Messidor database. It can help us to distinguish the diseased images and normal fundus images. The experimental results show that this method is better than the eye specialist's manual judgment in that it can detect exudation area more accurately in a changing enviroment of light by the integration of images.
[1] Sopharak A, Uyyanonvara B, Barman S, et al. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods[J]. Computerized Medical Imaging and Graphics, 2008, 32(8):720-727.
[2] Sopharak A, Uyyanonvara B, Barman S, et al. Fine exudate detection using morphological reconstruction enhancement[J]. International Journal of Applied Biomedical Engineering, 2010, 1(1):45-50.
[3] Ravishankar S, Jain A, Mittal A. Automated feature extraction for early detection of diabetic retinopathy in fundus images[C]//Computer Vision and Pattern Recognition, June 20-25,2009. Miami, FL,USA.[S.l.]:IEEE,2009:210-217.
[4] Jaafar H F, Nandi A K, Al-Nuaimy W. Detection of exudates in retinal images using a pure splitting technique[C]//2010 Annual International Conference of the IEEE Engineering in Medicine and Biology,Augest 31-Septmber4,2010, BuenosAires,Argentina.[S.l.]:IEEE, 2010:6745-6748.
[5] Welfer D, Scharcanski J, Marinho D R. A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images[J]. Computerized Medical Imaging and Graphics, 2010, 34(3):228-235.
[6] Feroui A, Messadi M, Hadjidj I, et al. New segmentation methodology for exudate detection in color fundus images[J]. Journal of Mechanics in Medicine and Biology, 2013, 13(1):1-14.
[7] Sopharak A, New K T, Moe Y A, et al. Automatic exudate detection with a naive Bayes classifier[C]//The 2008 International Conference on Embedded Systems and Intelligent Technology.[S.l.]:[s.n.],2008:139-142.
[8] Harangi B, Antal B, Hajdu A. Automatic exudate detection with improved Naïve-bayes classifier[C]//Computer-Based Medical Systems (CBMS), 201225th International Symposium on,June20-22,2012,Rome,Italy.[S.l.]:IEEE, 2012:1-4.
[9] Sopharak A, Uyyanonvara B, Barman S. Automatic exudate detection for diabetic retinopathy screening[J]. Science Asia, 2009, 35(1):80-88.
[10] Sopharak A, Uyyanonvara B, Barman S. Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy c-means clustering[J]. Sensors, 2009, 9(3):2148-2161.
[11] Rashid S,Shagufta S. Computerized exudate detection in fundus images using statistical feature based fuzzy C-mean clustering[J]. International Journal of Computing and digital systems, 2013, 2(3):135-145.
[12] Ravindraiah R, Prasad P R. Detection of exudates in diabetic retinopathy images using laplacian kernel induced spatial FCM clustering algorithm[J]. Indian Journal of Science and Technology, 2016, 9(15):1-6.
[13] Saha R, Chowdhury A R, Banerjee S. Diabetic Retinopathy Related Lesions Detection and Classification Using Machine Learning Technology[C]//International Conference on Artificial Intelligence and Soft Computing. West Bengal University of Technology, Kolkata, India.[S.l.]:Springer International Publishing, 2016:734-745.
[14] Sopharak A, Dailey M N, Uyyanonvara B, et al. Machine learning approach to automatic exudate detection in retinal images from diabetic patients[J]. Journal of Modern optics, 2010, 57(2):124-135.
[15] Haloi M, Dandapat S, Sinha R. A gaussian scale space approach for exudates detection, classification and severity prediction[J]. Computer Science,2015(9):1-7.
[16] Pereira C, Gonçalves L, Ferreira M. Exudate segmentation in fundus images using an ant colony optimization approach[J]. Information Sciences, 2015, 296:14-24.
[17] Zhang X, Thibault G, Decencière E, et al. Exudate detection in color retinal images for mass screening of diabetic retinopathy[J]. Medical Image Analysis, 2014, 18(7):1026-1043.
[18] Akyol K, Bayır Ş, Şen B. Detection of hard exudates in diaoetic retinopathy retinal images by utilizing visual dictionary and classifier approaches[J]. Mugla Journal of Science and Technology, 2016, 2(1):1-6.
[19] Prentašić P, Lončarić S. Detection of exudates in fundus photographs using convolutional neural networks[C]//20159th International Symposium on Image and Signal Processing and Analysis (ISPA),Zagreb,Croatia.[S.l.]:IEEE, 2015:188-192.
[20] 高玮玮, 沈建新, 王玉亮. RBF神经网络和阈值分割实现视网膜硬性渗出自动检测[J]. 中国图像图形学报, 2013, 18(7):859-865. GAO Weiwei,SHEN Jianxin,WANG Yuliang. RBF neural network and threshold segmentation realize automatic detection of hard retinal exudation[J]. Journal of Image and Graphics,2013,18(7):859-865.(in Chinese)
[21] 潘燕红, 潘林. 基于SVM的眼底图像硬性渗出检测[J]. 计算机与现代化, 2014(4):33-37. PAN Yanhong,PAN Lin. SVM-based hard seepage detection of fundus images[J]. Computer and Modernization,2014(4):33-37.(in Chinese)
[22] 朱江兵, 柯鑫, 刘畅,等. 基于计算机视觉的糖尿病视网膜病变自动筛查系统[J]. 首都医科大学学报, 2015, 36(6):848-852. ZHU Jiangbing,KE Xin,LIU Chang,et al. Automatic screening system for diabetic retinopathy based on computer vision[J].Journal of Capital Medical University,2015,36(6):848-852.(in Chinese)
[23] Aggarwal, C C. Data classification algorithms and applications[M].Florida:CRC press, 2014:11-16,493-495.