无取向硅钢中含镁夹杂物的形成机理分析
作者:
中图分类号:

TF557

基金项目:

国家自然科学基金项目(No.51674180)。


Formation mechanism analysis on magnesium-bearing inclusions in non-oriented silicon steels
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    通过取样检测和热力学计算,分析了钢中含镁夹杂物的组成特点和形成机理。结果表明:钢中的氧化物主要是与MgS复合的2MgO·SiO2或MgO-Al2O3-SiO2类夹杂,析出物主要为MgS、AlN;含MgS的复合夹杂物主要为1~2μm的球状夹杂,因为MgS抑制了MnS的析出,钢中不存在任何形式的MnS夹杂。MgS以包裹在球形氧化物表面、均匀镶嵌在球形夹杂物中、以氧化物为基体或与AlN复合定向析出并长大3种形式存在。热力学计算表明,钢中夹杂物的组成与钢中Mg含量及氧化物特征有关。MgS更容易与含MgO多、硫容量大的MgO-Al2O3-SiO2类夹杂复合析出。MgS以氧化物为基体或与AlN复合定向析出形成的夹杂尺寸更大,其析出长大方式与MgS及夹杂物基体的晶体结构有关。合理控制精炼渣中MgO含量有利于形成含MgS的复合夹杂物,从而减少钢中微细MnS的析出,同时降低钢中MgO·Al2O3的含量。

    Abstract:

    The composition characteristics and formation mechanism are analyzed for magnesium-bearing inclusions in the steel by sampling and thermodynamic calculation. The results show the main oxides is MgS precipitating with 2MgO·SiO2 or MgO-Al2O3-SiO2. And MgS and AlN are the main precipitates. MgS-bearing compound oxide inclusions are mainly globular within 1 μm to 2 μm in size. MgS restricts MnS precipitation, and any type of MnS isn't found in the steel. MgS-bearing inclusions exist in the steel with three forms:MgS wrapped with spherical oxide core, MgS uniformly distributed on the surface of spherical oxides, and MgS orientedly precipitated on oxides matrix or with AlN. Thermodynamic calculation results indicate magnesium content and characteristics of oxides decide the composition of inclusions in the steel. MgS is easy to precipitate with MgO-Al2O3-SiO2 complex with high MgO-bearing and sulphur capacity. The size of inclusions forming by MgS orienteering precipitating on oxides matrix or with AlN is much bigger, and their precipitation and growth method is related with the crystal structure of MgS and inclusions matrix. Fine MnS and MgO·Al2O3 can be diminished by controlling MgO content in refining slag to form composite inclusions bearing MgS.

    参考文献
    [1] Petrovic D S. Non-oriented electrical steel sheets[J]. Materials & Tehnologies, 2010, 44(6):317-325.
    [2] 何忠治, 赵宇, 罗海文. 电工钢[M]. 北京:冶金工业出版社, 2012. HE Zhongzhi, ZHAO Yu, LUO Haiwen. Electrical steels[M]. Beijing:Press of Metallurgy Industry, 2012.(in Chinese)
    [3] 毛卫民, 杨平. 电工钢的材料学原理[M]. 北京:高等教育出版社, 2013. MAO Weimin, YANG Ping. Material science principles on electrical steels[M]. Beijing:Higher Education Press, 2013.(in Chinese)
    [4] Bae B K, Chang S K, Woo J S. Effects of impurities and slab reheating temperature on the magnetic and material properties of non-oriented electrical steels[J]. CAMP-ISIJ, 1996(9):450.
    [5] Yamagami N, Chino A. Ultra-low sulfur non-oriented electrical steel sheets for highly efficient motors "NKB Core"[J]. NKK Technical Review, 2002, 178:16-20.
    [6] Nakayama T, Honjou N, Minaga T, et al. Effects of manganese and sulfur contents and slab reheating temperatures on the magnetic properties of non-oriented semi-processed electrical steel sheet[J]. Journal of Magnetism & Magnetic Materials, 2001, 234(1):55-61.
    [7] Petrovic D S, Jenko M, Jaklic A, et al. Correlation of titanium content and core loss in non-oriented electrical steel sheets[J]. Metalurgija, 2010, 49(1):37-40.
    [8] Zhang F, Li G Q. Control of ultra low titanium in ultra low carbon Al-Si killed steel[J]. Journal of Iron and Steel Research, 2013, 20(4):20-25.
    [9] Kohon M, Takashima M, Kohno M. Effect of REM addition on grain growth behavior of non-oriented electrical steel sheets[J]. CAMP-ISIJ, 2002, 15(6):1207.
    [10] Hou C K, Liao C C. Effect of cerium content on the magnetic properties of non-oriented electrical steels[J]. ISIJ International, 2008, 48(4):531-539.
    [11] Zhangg F, Ma C S, Wang B, et al. Control of nonmetallic inclusions of non-oriented silicon steel sheets by the rare earth treatment[J]. Baosteel Technical Research, 2011, 5(2):41-45.
    [12] Zhu C Y, Chen X H, Zhang L F, et al. Effects of RE on precipitation behaviors of the inclusions and magnetic properties of non-oriented electrical steel[J]. Materials Science Forum, 2016(852):38-48.
    [13] Zhang F, Miao L D, Zong Z Y, et al. Effects of calcium treatment on non-metallic inclusions and magnetic properties of non-oriented silicon steel sheets[J]. Baosteel Technical Research, 2013, 7(1):12-19.
    [14] 万勇, 陈伟庆, 吴绍杰. 钙和硼对无取向硅钢退火冷轧板组织和磁性能的影响[J]. 特殊钢, 2013, 34(5):64-68. WAN Yong, CHEN Weiqing, WU Shaojie. Effect of calcium and boron on structure and magnetic properties of non-oriented silicon steel[J]. Special Steel, 2013, 34(5):64-68.(in Chinese)
    [15] 赵勇, 孙彦辉, 殷雪, 等. 无取向硅钢钙处理前后夹杂物的行为研究[J]. 钢铁钒钛, 2014, 35(4):89-93. ZHAO Yong, SUN Yanhui, YIN Xue, et al. Research on behavior of inclusions before and after calcium treatment in non-oriented silicon steel[J]. Iron Steel Vanadium Titanium, 2014, 35(4):89-93.(in Chinese)
    [16] Zhao Y, Sun Y H. Behaviors and evolutions of MgO·Al2O3 in non-oriented silicon steel during calcium treat-ment[M]. New Jersey:Springer International Publishing, 2016:69-76.
    [17] Yano K, Honda A, Obara T, et al. Non-oriented silicon steel sheet and method[P].United States Patent:No.5676771,1997-10-14.
    [18] Matsuno H, Kikuchi Y. The origin of MgO type inclusion in high carbon steel[J]. Tetsu-to-Hagané, 2002, 88(1):48-50.
    [19] Fujii K, Nagasaka T, Hino M. Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO·Al2O3[J]. ISIJ International, 2000, 40(11):1059-1066.
    [20] Itoh H, Hino M, Ban Y S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel[J]. Metallurgical and Materials Transactions B, 1997, 28(5):953-956.
    [21] Chen P J, Zhu C Y, Li G Q, et al. Effect of sulphur concentration on precipitation behaviors of MnS-containing inclusions in GCr15 bearing steels after LF refining[J]. ISIJ International, 2017, 57(6):1019-1028.
    [22] Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3-MgO inclusions in aluminum killed ferritic stainless steel[J]. ISIJ International, 2000, 40(2):121-128.
    [23] 李吉东, 韩培德, 王烽, 等. 316L不锈钢LF精炼过程夹杂行为热力学分析和工艺优化[J]. 特殊钢, 2017, 38(1):23-26. LI Jidong, HAN Peide,WANG Feng, et al. Analysis on thermodynamics of behavior of inclusions in stainless steel 316L during LF refining and process optimization[J]. Special Steel, 2017, 38(1):23-26.(in Chinese)
    [24] 李双江, 姜周华,李阳,等. 430不锈钢尖晶石夹杂物控制的热力学分析[J]. 钢铁研究, 2010, 38(5):9-12. LI Shuangjiang, JIANG Zhouhua, LI Yang, et al. Thermodynamic anlysis of spinel inclusion control in 430 stainless steel[J]. Research on Iron & Steel, 2010, 38(5):9-12.(in Chinese)
    [25] 张同生, 王德永, 刘承军, 等. 1873K时镁对钢中氧化物、硫化物的共同变质机理[J]. 北京科技大学学报, 2014, 36(S1):189-193. ZHANG Tongsheng, WANG Yongde, LIU Chengjun, et al. Mechanism of modifying oxide and sulphide by Mg in liquid iron at 1873 K[J]. Journal of University of Science and Technology Beijing, 2014, 36(S1):189-193.(in Chinese)
    [26] Itoh H, Hino M, Ban Y S. Deoxidation equilibrium of magnesium in Liquid Iron[J]. Tetsu-to-Hagané, 1997, 83(10):623-628.
    [27] Ishii F, Ban Y S. Deoxidation of liquid nickel and nickel-iron alloy with silicon[J]. Tetsu-to-Hagané, 1989, 75(12), 2188-2193.
    [28] Ishii F, Ban Y S. Deoxidation equilibrium of silicon in liquid nickel and nickel-iron alloys[J]. ISIJ International, 1992, 32(10), 1091-1096.
    [29] 陈家祥. 炼钢常用图表数据手册[M].2版.北京:冶金工业出版社, 2010. CHEN Jiaxiang. Handbook of common chart data for steelmaking process[M]. 2nd ed. Beijing:Metallurgical industry Press, 2010.(in Chinese)
    [30] Hino M, Ito K. Thermodynamic data for steelmaking[M]. Sendai:Tohoku University Press, 2010.
    [31] Japan SPF. Steelmaking data sourcebook, The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking[M]. New York:Gordon and Breach Science Publishers, 1988.
    [32] Latourrette T, Wasserburg G J. Mg diffusion in anorthite:implications for the formation of early solar system planete-simals[J]. Earth and Planetary Science Letters, 1998, 158(3/4):91-108.
    [33] Verma N, Pistorius P C, Fruehan R J, et al. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel:part Ⅱ. Results and discussion[J]. Metallurgical and Materials Transactions B, 2011, 42(4):720-729
    [34] Liu Z Z, Wei J, Cai K K. A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel[J]. ISIJ International, 2002, 42(9):958-963.
    [35] 陈中钧, 肖海燕, 祖小涛. MgS晶体结构性质的密度泛函研究[J]. 物理学报, 2005, 54(11):5301-5307. CHEN Zhongjun, XIAO Haiyan, ZU Xiaotao. Density functional theory investigation on structural properties of MgS crystal[J]. Acta Physica Sinica, 2005, 54(11):5301-5307.(in Chinese)
    [36] 曾燕伟. 无机材料科学基础[M]. 2版. 武汉:武汉理工大学出版社. 2011. ZENG Yanwei. Fundamentals of inorganic materials science[M]. 2nd ed. Wuhan:Wuhan University of Technology Press, 2011.(in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱诚意,罗小燕,李光强,冯嘉鑫,严哲锋.无取向硅钢中含镁夹杂物的形成机理分析[J].重庆大学学报,2018,41(8):34-43.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-05
  • 在线发布日期: 2018-08-01
文章二维码