一种多分类的微博垃圾用户检测方法
作者:
中图分类号:

TP393

基金项目:

国家自然科学基金项目(61772099);中国博士后基金(2014M562282);重庆市博士后项目(XM2014039);重庆市人工智能技术创新重大主题专项(cstc2017rgzn-zdyf0140);重庆市高校优秀成果转化资助项目(KJZH17116)。


A multi-classification method for detecting microblog spam users
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对微博多类垃圾用户的检测问题,设计了一种基于模糊多类支持向量机的垃圾用户检测方法。首先,采用一对多SVM(support vector machines)的构造思想来构造多分类器,并针对每类用户的分类器重新选择训练集;然后,利用构造好的训练集来训练多分类器,经过反复调整参数,得到5个用户分类器;最后,针对多分类器的不可分样本,采用模糊聚类来进行模糊处理,即在垂直于SVM的最优分类面上定义一个改进的隶属度函数,选择最大隶属度对样本进行再分类。实验结果表明,该方法在保证垃圾用户检测效果的前提下,可以解决多分类中存在的混分和漏分问题。

    Abstract:

    Based on fuzzy multi-class support vector machine, a method for detecting microblog spammers is designed. Firstly, a multi-class SVM(support vector machines) is used to construct multi-classifiers, and a training set is re-selected for each type of user's classifier. Then, the constructed training set is used to train the multi-classifier, and five user classifiers are obtained after repeated remediation. Finally, for the non-separable samples of multiple classifiers, fuzzy clustering is used to perform the fuzzy processing. An improved membership function is defined on the optimal classification plane perpendicular to the SVM, and the maximum membership degree is used to reclassify the samples. Experimental results show that this method can solve the problems of mixing and missing points in multi-classification under the premise of ensuring the detection effect of spammers.

    参考文献
    [1] 张玉清, 吕少卿, 范丹. 在线社交网络中异常帐号检测方法研究[J]. 计算机学报, 2015, 38(10):2011-2027. ZHANG Yuqing, LV Shaoqing, FAN Dan. Anomaly detection in online social networks[J].Chinese Journal of Computers. 2015, 38(10):2011-2027.(in Chinese)
    [2] Mccord M, Chuah M. Spam detection on twitter using traditional classifiers[C]//Autonomic & Trusted Computing-International Conference, Banff:ACM Press, 2011:175-186.
    [3] Ma Y, Niu Y, Ren Y, et al. Detecting spam on sina weibo[J]. International Workshop on Cloud Computing and Information Security, 2013, 3(2):93-96.
    [4] Zheng X, Zeng Z, Chen Z, et al. Detecting spammers on social networks[J]. Neurocomputing, 2015, 159(1):27-34.
    [5] Tan E, Guo L, Chen S, et al. UNIK:unsupervised social network spam detection[C]//Acm International Conference on Conference on Information & Knowledge Management. San Francisco:ACM Press, 2013:479-488.
    [6] Fakhraei S, Foulds J, Shashanka M, et al. Collective spammer detection in evolving multi-relational social networks[C]//Acm Sigkdd Conference on Knowledge Discovery & Data Mining. Sydney:ACM Press, 2015:1769-1778.
    [7] Ahmed F, Abulaish M. Identification of sybil communities generating context-aware spam on online social networks[M]. Berlin:Springer, 2013:268-279.
    [8] Abe S. Fuzzy support vector machines for multilabel classification[J]. Pattern Recognition, 2015, 48(6):2110-2117.
    [9] Loosli G, Canu S. Comments on the "core vector machines:fast SVM training on very large data sets"[J]. Journal of Machine Learning Research, 2007, 8(2):291-301.
    [10] Zhou J H, Qin J, Gao K, et al. SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery[J]. International Journal of Remote Sensing, 2016, 37(11):2541-2559.
    [11] Cui P, Yan T. A SVM-based feature extraction for face recognition[J]. Communication in Computer and Information Science, 2016(623):120-126.
    [12] Wang W, Liu J, Pitsilis G, et al. Abstracting massive data for lightweight intrusion detection in computer networks[J]. Information Sciences, 2018(433/434):417-430.
    [13] Zhu W, Zhong P. A new one-class SVM based on hidden information[J]. Knowledge-Based Systems, 2014, 60(2):35-43.
    [14] Gao C, Ge Q, Jian L. Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(3):586-596.
    [15] 杨纶标, 高英仪, 凌卫新. 模糊数学原理及应用[M].5版. 广州:华南理工大学出版社, 2011. YANG Lunbiao, GAO Yingyi, LING Weixin. Principle and application of fuzzy mathematics[M].5th ed. Guangzhou:South China University of Technology Press, 2011.
    [16] Lunghi P, Ciarambino M, Lavagna M. A multilayer perceptron hazard detector for vision-based autonomous planetary landing[J]. Advances in Space Research, 2016, 58(1):131-144.
    相似文献
    引证文献
引用本文

杨云,徐光侠,雷娟.一种多分类的微博垃圾用户检测方法[J].重庆大学学报,2018,41(8):44-55.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-02
  • 在线发布日期: 2018-08-01
文章二维码