脱磷转炉脱磷渣FeO预报模型
作者:
中图分类号:

TF703.6


FeO prediction model of dephosphorization slag in converter for dephosphorization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高"全三脱"工艺脱磷转炉的脱磷效率、降低钢铁料的消耗,基于氧平衡机理模型,采用Levenberg-Marquardt神经网络优化算法,建立了脱磷转炉脱磷渣FeO预报模型。将氧平衡机理模型计算的氧化物(FeO,CaO,SiO2,MgO,MnO,P2O5,Al2O3)质量和出钢温度作为输入项导入神经网络工具箱,训练成误差最小化的网络。结果表明,FeO预测值与实测值相对误差在10%以内的炉次达到85%。建立的模型具有较高的预报命中率,可为现场生产提供理论依据。

    Abstract:

    In order to reduce the iron loss and improve the dephosphorization efficiency of the converter for dephosphorization by the full triple stripping process, a model, based on the oxygen balance mechanism, is bulit to predict the end point FeO content and the Levenberg-Marquardt neural network algorithm is adopted in this model. The calculation of the oxide mass (FeO, CaO, SiO2, MgO, MnO, P2O5, Al2O3) with the oxide balance mechanism model and the tapping temperature are used as inputs to the neural network toolbox to train the network with minimum error. The results show that the heat with relative error of 10% between the predicted value and the measured value of FeO is up to 85%.This proves that the FeO prediction hit rate of the model is high, and can provide theoretical basis for production on site.

    参考文献
    [1] 孙彦辉, 赵长亮, 罗磊, 等. 300t顶底复吹转炉炉渣磷酸盐容量计算分析及预测模型[J]. 工程科学学报, 2016, 38(S1):83-89. SUN Yanhui, ZHAO Changliang, LUO Lei, et al. Calculation and analysis of slag phosphate capacity and prediction model in 300 t top-and bottom-blowing converter[J]. Chinese Journal of Engineering:2016, 38(S1):83-89.(in Chinese)
    [2] 王新华. 钢铁冶金-炼钢学[M]. 北京:高等教育出版社, 2007. WANG Xinhua. Steelmaking ofiron and steel metallurgy[M]. Beijing:Higher Education Press, 2007.(in Chinese)
    [3] Maisui A, Nabeshima S, Matsuno H, et al. Kinetics behavior of iron oxide formation under the condition of oxygen top blowing for dephosphorization of hot metal in the basic oxygen fur-nace[J]. Tetsu-to-Hagane, 2009, 95(3):207-216.
    [4] 赵志超, 孙彦辉, 罗磊, 等. 300 t顶底复吹转炉炉渣FeO动态预测模型[J]. 炼钢, 2015, 31(6):13-15. ZHAO Zhichao,SUN Yanhui,LUO Lei,et al. The dynamic prediction model of FeO mass fraction in slag[J]. Steelmaking:2015, 31(6):13-15.(in Chinese)
    [5] Lytvynyuk Y, Schenk J, Hiebler M, et al. Thermodynamic and kinetic model of the converter steelmaking process. Part 1:the description of the BOF model[J]. Steel research international, 2014, 85(4):537-543.
    [6] Coley K S, Chen E, Pomeroy M.Kinetics of reaction important in oxygen steelmaking[M]. Berlin:Springer International Publishing, 2014:289-302.
    [7] Kitamura S.Importance of kinetic models in the analysis of steelmaking reactions[J]. Steel Research International, 2010, 81(9):766-771.
    [8] Gu K,Dogan N, Coley K S,et al. Correction to:dephosphorization kinetics between bloated metal droplets and slag containing FeO:the influence of CO bubbles on the mass transfer of phosphorus in the metal[J]. Metallurgical and Materials Transactions B, 2017,48(6):3408.
    [9] Gao P, Li G F, Han Y X, et al. Reactionbehavior of phosphorus in coal-based reduction of an oolitic hematite ore and pre-dephosphorization of reduced iron[J]. Metals-Open Access Metallurgy Journal, 2016, 6(4):82.
    [10] Matsugi R, Miwa K, Hasegawa M. Activities of FeO and P2O5 in dephosphorization slags coexisting with solid solutions between di-calcium silicate and tri-calcium phosphate[J]. Isij International, 2017, 57(10):1718-1724.
    [11] Kakimoto S, Kiyose A, Murao R, et al. Influence of P2O5 on dissolution behavior of lime in molten slag[J]. Isij International, 2017,57:1710-1717.
    [12] Du C M, Gao X, Ueda S, et al. Effects ofcooling rate and acid on extracting soluble phosphorus from slag with high P2O5 content by selective leaching[J]. Isij International, 2017, 57(3):487-496.
    [13] 王旭,王宏, 王文辉. 人工神经元网络原理与应用[M]. 沈阳:东北大学出版社, 2007. WANG Xu,WANG Hong, WANG Wenhui. The principle and application of artificial neural network[M]. Shenyang:Northeastern University press, 2007. (in Chinese)
    [14] 付国庆, 刘青, 汪宙, 等. LF精炼终点钢水温度灰箱预报模型[J]. 北京科技大学学报, 2013, 35(7):948-954. FU Guoqing, LIU Qing, WANG Zhou, et al. Grey box model for predicting the LF end-point temperature of molten steel[J]. Journal of University of Science and Technology Beijing, 2013, 35(7):948-954. (in Chinese)
    [15] Ogasawara Y, Miki Y, Uchida Y, et al. Development of high efficiencydephosphorization system in decarburization converter utilizing FetO dynamic control[J]. ISIJ International, 2013, 53(10):1786-1793.
    [16] 豆晓飞, 祝明妹, 林天成,等. 磷在CaO-SiO2-FetO-P2O5与2CaO·SiO2颗粒界面间的传质行为[J]. 重庆大学学报, 2015, 38(5):78-82. DOU Xiaofei, ZhU Mingmei, LIN Tiancheng, et al. Behavior of phosphorus transfer from CaO-SiO2-FetO-P2O5 slags to 2CaO·SiO2 particles[J]. Journal of Chongqing University:2015, 38(5):78-82. (in Chinese)
    [17] 范志刚, 邱贵宝, 贾娟鱼,等. 基于BP神经网络的高炉焦比预测方法[J]. 重庆大学学报(自然科学版), 2002(6):85-87,91. FAN Zhigang, QIU Guibao, JIA Juanyu, et al. Method to predict the coke rate based on BP neural network[J]. Journal of Chongqing University(Natural Science Edition):2002(6):85-87,91. (in Chinese)
    [18] 张晴晴, 刘勇, 潘接林, 等. 基于卷积神经网络的连续语音识别[J]. 工程科学学报, 2015, 37(9):1212-1217. ZHANG Qingqing, LIU Yong, PAN Jielin, et al. Continuous speech recognition by convolutional neural networks[J]. Chinese Journal of Engineering:2015, 37(9):1212-1217. (in Chinese)
    [19] 徐淼斐, 高永涛, 金爱兵, 等. 基于超声波波速及BP神经网络的胶结充填体强度预测[J]. 工程科学学报, 2016, 38(8):1059-1068. XU Miaofei, GAO Yongtao, JIN Aibing, et al. Prediction of cemented backfill strength by ultrasonic pulse velocity and BP neural network[J]. Chinese Journal of Engineering:2016, 38(8):1059-1068. (in Chinese)
    [20] 李治友,陈才, 曹长修. 一种基于改进的RBF神经网络的铁水脱硫预报模型[J]. 重庆大学学报(自然科学版), 2003(9):119-122. LI Zhiyou, CHEN Cai, CAO Changxiu. A prediction model for molten iron desulfuration based on an improved RBFNN[J]. Journal of Chongqing University(Natural Science Edition):2003(9):119-122. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苏晓伟,崔衡,张丙龙,刘延强,罗磊,季晨曦.脱磷转炉脱磷渣FeO预报模型[J].重庆大学学报,2018,41(8):56-65.

复制
分享
文章指标
  • 点击次数:784
  • 下载次数: 1025
  • HTML阅读次数: 440
  • 引用次数: 0
历史
  • 收稿日期:2018-01-02
  • 在线发布日期: 2018-08-01
文章二维码