基于遗忘机制的ISWI积极思想传播模型
作者:
中图分类号:

TP391

基金项目:

教育部人文社科研究思想政治专项资助项目(16JDSZ2019);教育部人文社科青年项目(16YJC860010);国家自然科学基金青年项目(61503052);重庆市教委人文社科一般项目(17SKG151,17SKG144);重庆市社会科学规划青年项目(2016QNCB28);国家社科基金项目(17XXW004);重庆市社会科学规划博士项目(2015BS059);重庆市教育科学规划资助项目(2016-GX-131)。


The ISWI positive ideology propagation model with forgetting mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现阶段对积极思想传播的研究较少运用动力学模型进行分析的问题,提出了一种基于遗忘机制的积极思想传播ISWI模型。利用Hurwitz判据、Lyapunov稳定性定理和LaSalle不变性原理,分析并证明了思想传播平衡点的局部稳定性和全局稳定性,并得出了传播阈值与思想传播的影响因子遗忘率和接触率之间的关系。仿真结果表明:遗忘率降低时,思想传播的范围会扩大;接触率提高时,传播范围也会扩大。遗忘率与传播范围呈负相关,接触率与之呈正相关。

    Abstract:

    In view of the fact that the study of the positive ideology propagation rarely takes into account of the dynamic model, we built the positive ideology propagation model based on forgetting mechanism. By using the Hurwitz criterion, Lyapunov stability theorem and LaSalle invariance principle, the local stability and global stability of the equilibrium points of ideology propagation were analyzed. The relationship between the propagation threshold and forgetting/cotact rate of influence factors of ideology propagation was obtained. The simulation results show that the range of ideology propagation will be expanded when the rate of forgetting reduces or the contact rate increases. That is to say, the spread range is negatively correlated with the forgetting rate and positively correlated with the contact rate, respectively.

    参考文献
    [1] 田文汇,李莎.基于复杂网络理论的大学生党员思想传播模型研究[J].科技信息,2009(25):513. TIAN Huiwen, LI Sha. Research on the model of college students party members' ideological communication based on complex network theory[J]. Technical information, 2009(25):513. (in Chinese)
    [2] Zhao L, Wang X, Qiu X, et al. A model for the spread of rumors in Barrat-Barthelemy-Vespignani (BBV) networks[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(21):5542-5551.
    [3] Zhao L, Cui H, Qiu X, et al. SIR rumor spreading model in the new media age[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(4):995-1003.
    [4] Liu Q, Li T, Sun M. The analysis of an SEIR rumor propagation model on heterogeneous network[J]. Physica A Statistical Mechanics & Its Applications, 2017, 469:372-380.
    [5] Qian Z, Tang S, Zhang X, et al. The independent spreaders involved SIR rumor model in complex networks[J]. Physica A Statistical Mechanics & Its Applications, 2015, 429(1):95-102.
    [6] Xia L L, Jiang G P, Song B, et al. Rumor spreading model considering hesitating mechanism in complex social networks[J]. Physica A Statistical Mechanics & Its Applications, 2015, 437(1):295-303.
    [7] Zan Y, Wu J, Li P, et al. SICR rumor spreading model in complex networks:Counterattack and self-resistance[J]. Physica A Statistical Mechanics & Its Applications, 2014, 405(1):159-170.
    [8] Malone L A, Bastian A J. Age-related forgetting in locomotor adaptation[J]. Neurobiology of Learning & Memory, 2015, 128(2):1-6.
    [9] Sadeh T, Ozubko J D, Winocur G, et al. How we forget may depend on how we remember[J]. Trends in Cognitive Sciences, 2013, 18(1):26-36.
    [10] Ebbinghaus H. Memory:A contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4):155-159.
    [11] Zhao L, Qiu X, Wang X, et al. Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(4):987-994.
    [12] Zhao L, Wang Q, Cheng J, et al. Rumor spreading model with consideration of forgetting mechanism:A case of online blogging LiveJournal[J]. Physica A Statistical Mechanics & Its Applications, 2011, 390(13):2619-2625.
    [13] Wang Y B, Cai W D. Researching rumor spreading with forgetting mechanism considered in social networking[J]. Journal of Northwestern Polytechnical University, 2016, 34(4):349-355.
    [14] Yang L X, Yang X, Zhu Q, et al. A computer virus model with graded cure rates[J]. Nonlinear Analysis Real World Applications, 2013, 14(1):414-422.
    [15] Yang L X, Yang X. The impact of nonlinear infection rate on the spread of computer virus[J]. Nonlinear Dynamics, 2015, 82(1-2):85-95.
    [16] Liu W, Liu C, Liu X, et al. Modeling the spread of malware with the influence of heterogeneous immunization[J]. Applied Mathematical Modelling, 2016, 40(4):3141-3152.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冉茂洁,张光建,黄贤英,刘超,刘小洋.基于遗忘机制的ISWI积极思想传播模型[J].重庆大学学报,2018,41(9):77-85.

复制
分享
文章指标
  • 点击次数:815
  • 下载次数: 1074
  • HTML阅读次数: 733
  • 引用次数: 0
历史
  • 收稿日期:2018-04-25
  • 在线发布日期: 2018-10-09
文章二维码