气体绝缘363 kV快速真空断路器电场分析
作者:
中图分类号:

TM151

基金项目:

国家电网公司指南项目(5229DK160005)。


Electric field analysis of gas insulated 363 kV fast vacuum circuit breaker
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    具有快速开断能力的真空断路器能够在极短时间内开断短路电流,有利于减小短路电流对电网设备的冲击,但目前单断口的真空断路器难以直接应用于高电压等级电网。提出了一种全新的SF6气体绝缘的363 kV真空断路器,采用40.5 kV真空灭弧室的串并联结构,采用基于涡流驱动原理的操动机构实现短路电流的快速开断。对于高电压等级真空断路器,需要重点研究断路器内部的电场分布问题。基于总体设计结构的对称性对断路器单个单元和端部单元进行了简化,然后建立了对应的断路器三维多重介质有限元计算模型,分析了导电杆、灭弧室、接线端子等关键部件的电场强度。计算结果表明:电场严重集中于上下接线端子、转接法兰的圆角处。雷电冲击电压下,接线端子圆角和转接法兰圆角最大值分别为28.5 kV/mm和22.9 kV/mm,导电杆的表面最大电场为13.4 kV/mm,真空灭弧室内外及其他部件均处于控制范围内。对接线端子的圆角半径进行了优化设计,确定其圆角半径为12 mm,为样机的生产提供了参考。

    Abstract:

    Vacuum circuit breakers (VCB) with faster breaking speed can break the short-circuit current in a very short time, which is helpful to reduce the impact of short-circuit current on the power equipment. However, it is difficult to apply single-break VCB to high-voltage grid directly. In this paper, a novel SF6 gas insulated 363 kV VCB is proposed, which uses the series and parallel structure of 40.5 kV vacuum interrupters. It is able to cut short circuit current in extremely short time by using the operating mechanism based on the eddy current driving principle. For higher voltage level VCB, it is of significance to study its internal electric field. A multi-medium 3D FEM model is established and the single and terminal unit's electric field are determined based on the simplified symmetrical structure. Then the electric field of bus bar, arc extinguish chamber and connecting terminals are analyzed. The results show that, under lightning impulse voltage, the maximum electric field is at the circular bead of connecting terminals and transfer flange, reaching at 28.5 kV/mm and 22.9 kV/mm respectively. The maximum electric field on the surface of the bus bar is 13.4 kV/mm, and electric field inside and outside the vacuum interrupter and other components are in the control range. Connecting terminals radius is optimized and its optimal value is determined to be 12 mm, which provides a reference for the prototype production.

    参考文献
    [1] Zhang B, Li R, Ding J, et al. A relationship between minimum arcing interrupting capability and opening velocity of vacuum interrupters in short-circuit current interruption[J]. IEEE Transactions on Power Delivery, PP(99):1-1.
    [2] 周念成, 刘家伟, 赵渊,等. 消弧线圈接地系统暂态能量选线新方法[J]. 重庆大学学报, 2009, 32(12):1425-1430. ZHOU Niancheng, LIU Jiawei, ZHAO Yuan,et al. Novel method for fault line selection in arc suppression coils system using transient energy[J]. Journal of Chongqing University, 2009, 32(12):1425-1430.(in Chinese)
    [3] Ide N, Tanaka O, Yanabu S, et al. Interruption characteristics of double-break vacuum circuit breakers[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2008, 15(4):1065-1072.
    [4] Huang D, Wu G, Ruan J, et al. Study on static and dynamic voltage distribution characteristics and voltage sharing design of a 126-kV modular triple-break vacuum circuit breaker[J]. IEEE Transactions on Plasma Science, 2015, 43(8):2694-2702.
    [5] Cheng X, Chen Z, Ge G, et al. Dynamic dielectric recovery synergy of hybrid circuit breaker with CO2 gas and vacuum interrupters in series[J]. IEEE Transactions on Plasma Science, 2017, PP(99):1-8.
    [6] Yao X, Wang J, Geng Y, et al. Development and type test of a single-break 126-kV/40-kA-2500-A vacuum circuit breaker[J]. IEEE Transactions on Power Delivery, 2016, 31(1):182-190.
    [7] 艾绍贵, 马奎, 吴旭涛,等. 快速真空断路器在电力系统中的应用[J]. 电工电气, 2016(5):1-5. AI Shaogui, MA Kui, WU Xutao, et al. Application of fast vacuum circuit breaker in electric system[J]. Electrotechnics Electric, 2016(5):1-5.(in Chinese)
    [8] 艾绍贵, 马奎, 贺好艳,等. 一体化集成变阻抗节能变压器的研究[J]. 高电压技术, 2016, 42(4):1028-1034. AI Shaogui, MA Kui, HE Haoyan, et al. Research on integrated variable impedance energy-saving transformer[J]. High Voltage Engineering, 2016, 42(4):1028-1034.(in Chinese)
    [9] 吴高波, 阮江军, 黄道春,等. 多断口真空断路器均压电容研究综述[J]. 高压电器, 2011, 47(3):77-81. WU Gaobo, RUAN Jiangjun, HUANG Daochun, et al. Review of grading capacitors of multi-break vacuum circuit breakers[J]. High Voltage Apparatus, 2011, 47(3):77-81.(in Chinese)
    [10] Huang D, Shu S, Ruan J. Transient recovery voltage distribution ratio and voltage sharing measure of double-and triple-break vacuum circuit breakers[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2016, 6(4):545-552.
    [11] 李俐莹, 刘晓明.能量分离喷口高压SF6断路器灭弧室电场分析[J].电工技术学报,2015,30(13):56-62. LI Liying, LIU Xiaoming. Analysis on the electrical field of high voltage SF6 arc quenching chamber with energy separation nozzle[J]. Transactions of China Electrotechnical Society, 2015,30(13):56-62.(in Chinese)
    [12] 唐治德, 刘海龙, 陈秀发,等. 容积导电能量传递多场耦合数值模拟[J]. 重庆大学学报, 2013, 36(1):69-74. TANG Zhide, LIU Hailong, CHEN Xiufa, et al. Multi-field coupled numerical simulation of volume conduction energy transfer[J]. Journal of Chongqing University, 2013, 36(1):69-74. (in Chinese)
    [13] 汪朝晖, 廖振方, 陈德淑. 有限元法分析尖板电极结构的空间静电场分布[J]. 重庆大学学报, 2010, 33(5):41-47. WANG Zhaohui, LIAO Zhenfang, CHEN Deshu. Analysis of spatial electric field with point-plate electrodes configuration using finite element method[J]. Journal of Chongqing University, 2010, 33(5):41-47.(in Chinese)
    [14] 杨敬华, 范承勇. 40.5kV真空断路器绝缘结构电场分析及优化设计[J]. 电网技术, 2011, 35(12):146-152. YANG Jinghuan, FAN Chengyong. Electric field analysis and optimization design of insulation structure of 40.5 kV vacuum circuit-breaker[J]. Power System Technology, 2011, 35(12):146-152.(in Chinese)
    [15] 邱志斌, 黄道春, 阮江军. 72.5kV真空灭弧室电位和电场分布研究[J]. 高压电器, 2012, 48(11):36-42. QIU Zhibin, HUANG Daochun, RUAN Jiangjun. Potential and electric field distributions of 72.5 kV vacuum interrupter[J]. High Voltage Apparatus, 2012, 48(11):36-42.(in Chinese)
    [16] Fu S, Cao Y, Wang B, et al. Three dimensional electric field in a novel rotary-gas nozzle structure of SF6 circuit breaker[C]/[KG-0.5mm]/Power and Energy Engineering Conference. IEEE, 2010:1-4.
    [17] 黄道春, 阮江军, 吴高波,等. 具有串并联结构的模块化多断口真空断路器静动态电压分布特性[J]. 电网技术, 2011, 35(7):181-186. HUANG Daochun, RUAN Jiangjun, WU Gaobo, et al. Study on static and dynamic voltage distribution characteristics of modularized multi-break vacuum circuit breaker with series and parallel configuration[J]. Power System Technology, 2011, 35(7):181-186.(in Chinese)
    [18] Liao M F, Ge G W, Duan X Y, et al. Influence of the AMF arc control on voltage distribution of double-break VCBs[J]. IEEE Transactions on Plasma Science, 2016, 44(10):2455-2461.
    [19] 程显, 焦连曜, 葛国伟,等. 真空间隙与CO2气体间隙串联的混合断路器电场仿真计算[J]. 真空科学与技术学报, 2016, 36(12):1356-136 CHENG Xian, JIAO Lianyao, GE Guowei, et al. Simulation of electric field distributions in vacuum/CO2 gaps of hybrid circuit breaker[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(12):1356-1362.(in Chinese)
    [20] 国家能源局. 高压开关设备和控制设备标准的共用技术要求:DL/T 593-2016[S]. 北京:中国电力出版社, 2016. National Energy Administration. Common specifications for high-voltage switchgear and controlgear standard:DL/T 593-2016[S]. Beijing:China Electrical Power Press, 2016. (in Chinese)
    [21] 黎斌.SF6高压电器设计[M].4版.北京:机械工业出版社,2015. LI Bin. SF6 high voltage electrical design[M]. 4th edition. Beijing:China Machine Press,2015.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

艾绍贵,余晓,黄永宁,杨帆,樊益平,杜玮.气体绝缘363 kV快速真空断路器电场分析[J].重庆大学学报,2018,41(10):61-68.

复制
分享
文章指标
  • 点击次数:828
  • 下载次数: 782
  • HTML阅读次数: 548
  • 引用次数: 0
历史
  • 收稿日期:2018-02-03
  • 在线发布日期: 2018-10-22
文章二维码