基于压力拱理论的矿块间回采顺序数值模拟
作者:
中图分类号:

TD852

基金项目:

“十二五”国家科技支撑计划课题(2015BAB14B01);中南大学佳纳学生创业资助项目(201710533525)。


Numerical simulation of stoping sequence among ore block based on pressure arch theory
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    合理的回采顺序能够有效地改善岩体的应力分布状态,有助于保证采场的稳定性。为确定新桥矿-300 m中段合理的矿块间回采顺序,根据矿山现有条件,提出3种矿块间回采顺序方案,即平行推进、"品"字形推进、倒"品"字形推进;通过Midas有限元软件对各方案进行数值模拟,综合考虑拉应力、压应力和位移3个因素,运用压力拱理论对模拟结果进行对比分析。结果表明:矿体开挖之后,会在采空区周围形成压力拱,且随着采空区的增加,压力拱的外边界向岩体深部移动;"品"字形回采过程中,中部采空区与两侧采空区在上部可以形成一个更大压力拱,承担其自身和上覆的岩土载荷,其最大拉应力为2.288 MPa,最大压应力为23.24 MPa,最大位移为55.71 mm,均远小于其他2种方案,相比之下,该方案更加合理。经该矿山生产实践表明,"品"字形回采顺序已在矿山推广应用,取得良好的经济、社会效益。

    Abstract:

    Rational stoping sequence can effectively improve the stress distribution state of rock mass and ensure the stability of the stope. To determine a reasonable stoping sequence among ore block of Xingqiao Mine -300 m middle section, three schemes of stoping sequence among ore block were put forward according to mine existing conditions, including parallel stoping, Pin-pillar stoping and inverted Pin-pillar stoping, and by Midas finite element software, the numerical simulation models of the shemes were established. Considering the tensile stress, compressive stress and displacement, pressure arch theory was applied to analyze the simulation results. The results show that after the excavation of the ore body, the pressure arch will be formed around the goaf, and with the increase of the goaf, the outer boundary of the pressure arch moves to the deep part of the rock mass; during Pin-pillar stoping process, central part and both sides of goaf form a larger arch to bear its own and overlying rock load. The maximum tensile stress and compressive stress are respectively 2.288 MPa and 23.24 MPa with a maximum displacement of 55.71 mm, which are smaller than those of the other two options. In contrast, the program is more reasonable. The mining practice shows that the production process of Pin-pillar stoping sequence applied in the mine has achieved good economic and social benefits.

    参考文献
    [1] 杨旭旭,靖洪文,陈坤福, 等. 深部原岩应力对巷道围岩破裂范围的影响规律研究[J].采矿与安全工程学报, 2013, 30(4):495-550. YANG Xuxu, JING Hongwen, CHEN Kunfu, et al. Study on influence law of in-situ stress in deep underground rocks on the size of failure zone in roadway[J]. Journal of Mining & Safety Engineering, 2013, 30(4):495-550.(in Chinese)
    [2] 张雯, 曹平. 某铜矿二次应力场的监测与分析[J]. 南华大学学报(自然科学版), 2009, 23(1):42-44. ZHANG Wen, CAO Ping. Monitoring and analysis of the secondary stress of copper mine[J]. Journal of University of South China(Science and Technology), 2009, 23(1):42-44.(in Chinese)
    [3] Wang S R, Li N, Li C L, et al. Mechanics Evolution Characteristics Analysis of Pressure-arch in Fully-mechanized Mining Field[J]. Journal of Engineering Science & Technology Review, 2014, 7(4):40-45.
    [4] 徐文彬, 宋卫东, 万海文.大阶段嗣后充填回采顺序及出矿控制技术研究[J].金属矿山, 2011(6):13-15. XU Wenbin, SONG Weidong, WAN Haiwen. Study on mining sequence and ore-drawing control technique of high-stage backfill mining[J]. Metal Mine, 2011(6):13-15.(in Chinese)
    [5] Wang Y, Jing H, Zhang Q, et al. Prediction of collapse scope of deep-buried tunnels using pressure arch theory[J]. Mathematical Problems in Engineering,2016,2016:1-10[2018-1-30]. http://dx.doi.org/10.1155/2016/2628174.
    [6] Sansone E C, Silva L A A D. Numerical modeling of the pressure arch in underground mines[J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(4):436.
    [7] Wang P,Li H Q, Li Y, et al. Stability analysis of backfilling in subsiding area and optimization of the stopingsequence[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(6):478-485.
    [8] Liu Y Z, Wang Q H, Ye Y C, et al. Optimization of Stopestructure parameters in E'xi Iron Mine based on rock stress analysis[J]. Applied Mechanics & Materials, 2011, 66/67/68:1434-1439.
    [9] Wang W, Zhang H, Bian J. Research on the opportunity of construction method conversion in upper-soft and lower-hard stratum based on pressure arch theory[C]//International Congress and Exhibition "Sustainable Civil Infrastructures:Innovative Infrastructure Geotechnology".[S.l.]:Springer, 2017:8-16.
    [10] 秦健春, 王新民. 充填法两步回采采场结构参数优化[J]. 矿冶工程, 2012, 32(4):1-4. QIN Jianchun, WANG Xinmin. Stopestructure parameters optimization forbackfill by two-step stoping[J]. Mining and Metallurgical Engineering, 2012, 32(4):1-4.(in Chinese)
    [11] Shabanimashcool M, Li C C. Numerical modelling of longwall mining and stability analysis of the gates in a coal mine[J]. International Journal ofRock Mechanics & Mining Sciences, 2012, 51(4):24-34.
    [12] 杨玉学,程宏,杨天宝.基于Flac3D数值模拟的阶段回采顺序研究[J].金属矿山, 2013, 446(8):24-26. YANG Yuxue, CHENG Hong, YANG Tianbao. Study of stage stopingsequence based on Flac3D numerical simulation software[J]. Metal Mine, 2013, 446(8):24-26. (in Chinese)
    [13] 王李管, 任助理, 潘传鹏, 等.基于混合整数规划法的采场回采顺序优化分析[J].中国有色金属学报,2016, 26(1):173-179. WANG Liguan, REN Zhuli, PAN Chuanpeng, et al.Optimization analysis of stope mining sequence based onmixed integer programming[J]. The Chinese Journal of Nonferrous Metals,2016, 26(1):173-179. (in Chinese)
    [14] 叶义成, 施耀斌, 王其虎, 等. 缓倾斜多层矿床充填法开采围岩变形及回采顺序试验研究[J].采矿与安全工程学报, 2015, 32(3):407-413. YE Yicheng, SHI Yaobin, WANG Qihu, et al.Experimental study of deformation of wall rock andstoping sequence in mining gently inclined andmultilayer deposits by backfill mining[J]. Journal of Mining & Safety Engineering, 2015, 32(3):407-413. (in Chinese)
    [15] Wu X, Tu Z. Research of the shape of pressure arch in layered rock mass based on the Protodyakonov's theory[C]//2017 7th International Conference on Manufacturing Science and Engineering(ICMSE 2017).[S.l.]:ICMSE, 2017[2018-1-30] https://www.researchgate.net/publication/316901765_Research_of_the_Shape_of_Pressure_Arch_in_Layered_Rock_Mass_Based_on_the_Protodyakonov's_Theory. DOI:10.2991/icmse-17.2017.45.
    [16] Shi R X, Ai C, Zhao W C, et al. The damage mechanics model of the wellbore surrounding rock based on fractal theory[J]. Applied Mechanics & Materials, 2013, 423/424/425/426:1623-1626.
    [17] 王云飞, 李长洪. 不同开挖方式地下硐室压力拱的演变机理研究[J].矿业研究与开发, 2009, 29(3):12-20. WANG Yunfei, LI Changhong. Research on evolution mechanics of pressure arch of underground cavern excavated in different ways[J]. Mining Research and Development, 2009,29(3):12-20.(in Chinese)
    [18] 马小虎, 李德武,马为功. 纸坊隧道压力拱拱体的确定[J].甘肃科技, 2011, 27(6):136-138. MA Xiaohu, LI Dewu, MA Weigong. Determination of pressure arch in Zhifang tunnels[J]. Gansu Science and Technology, 2011, 27(6):136-138.(in Chinese)
    [19] Anwar K. A study on stress rock arch development around dual caverns[D]. Nanyang:Technological University, Singapore, 2003.
    [20] 潘常甲.新桥矿深部岩体力学性质分析及稳定性综合分级研究[D]. 长沙:中南大学, 2009. PAN Changjia. Study on mechanical properties and stability classification of deep rock mass in XinqiaoMine[D]. Changsha:Central South University, 2009. (in Chinese)
    [21] Song Y X. Calculation of surrounding rock pressure based on pressure arch theory[C]//5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) 2016.[S.l.]:Atlantis Press, 2016:276-283.
    [22] PoulsenBA. Coal pillar load calculation by pressure arch theory and near field extraction ratio[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(7):1158-1165.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张德明,王浩,卞继伟,李红鹏.基于压力拱理论的矿块间回采顺序数值模拟[J].重庆大学学报,2018,41(10):78-89.

复制
分享
文章指标
  • 点击次数:716
  • 下载次数: 961
  • HTML阅读次数: 870
  • 引用次数: 0
历史
  • 收稿日期:2018-05-01
  • 在线发布日期: 2018-10-23
文章二维码