基于信息传递和峰值聚类的自适应社区发现算法
作者:
中图分类号:

TP393

基金项目:

国家自然科学基金资助项目(2015AA01A706)。


An adaptive community detection method based on information transfer and density peaks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    信息传递是网络具有的基本特征,基于此提出了一种基于信息传递和峰值聚类的自适应社区发现算法。首先,定义了节点与邻居之间的信任度函数,每个节点基于信任度独立的向网络中扩散信息量。扩散结束后,节点总信息量即为峰值聚类中的密度;网络中节点之间的距离通过所含节点信息量的倒数替代。然后,提出一种自动选取核心节点方法并为核心节点分配不同社区,把剩余节点分配到与它距离最短的核心节点所在社区,完成社区划分。本算法的优点在于无需额外参数并且能够发现社区内部结构。实验结果表明本算法发现的社区结构更加接近网络真实社区结构。

    Abstract:

    Information transfer is the basic feature of the network. Accordingly, an adaptive community detection method based on information transfer and density peaks is proposed. Firstly, the trust degree function between nodes and neighbors is defined, and each node independently spreads amount of information to the network based on the trust degree. After the diffusion, the total information amount of the node is the density of the density peaks. The distance between the nodes in the network is replaced by the reciprocal of the information amount of the destination node. Then, a method is proposed that can automatically select core nodes which are divided into different communities, and the remaining nodes are allocated to the community of the closest core node. The algorithm has the advantage that no additional parameters are needed and the internal structure of the community can be found. The experimental results show that.

    参考文献
    [1] Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.
    [2] Fortunato S. Community detection in graphs[J]. Physics Reports, 2009, 486(3-5):75-174.
    [3] Newman M E J. Communities, modules and large-scale structure in networks[J]. Nature Physics, 2012, 8(8):25-31.
    [4] Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3):36-40.
    [5] Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences, 2008, 105(4):1118-1123.
    [6] Pons P, Latapy M. Computing communities in large networks using random walks[C]//Computer and Information Sciences-ISCIS 2005. Berlin:Springer Heidelberg, 2005:284-293.
    [7] Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
    [8] 黄岚,李玉,王贵参,等. 基于点距离和密度峰值聚类的社区发现方法[J]. 吉林大学学报工学版, 2016, 46(6):2042-2051. HUANG Lan, LI Yu, WANG Guishen, et al. Community detection method baased on vertex distance and clustering of density peaks[J]. Journal of Jilin University, 2016, 46(6):2042-2051(in Chinese).
    [9] Huang L, Wang G, et al. A link density clustering algorithm based on automatically selecting density peaks for overlapping community detection[J]. International Journal of Modern Physics B, 2016, 30(24):1650167.
    [10] Wang X, Liu G, Li J, et al. Locating structural centers:a density-based clustering method for community detection[J]. PLoS ONE, 2017, 12(1):e0169355.
    [11] Chen Y. Finding communities by their centers[J]. Scientific Reports, 2016,6:24017.
    [12] Clauset A, Newman M E, Moore C. Finding community structure in very large networks[J]. Physical review E, 2004, 70(2):066111.
    [13] Zachary W W, An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1997, 33(4):452-473.
    [14] Lusseau D. The emergent properties of a dolphin social network[J]. Proceedings Biological Sciences, 2003(270):S186-S188.
    [15] Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy Sciences of USA, 2002, 99(12):7821-7826.
    [16] Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78(4):46-52.
    [17] Newman M E, Girvan M. Finding and evaluating community structure in networks[J]. Physical review E, 2004, 69(2):026113.
    [18] Danon L, Diaz-Guilera A, Duch J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics, 2005, 2005(09):9-18.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵建军,汪清,由磊,洪文兴.基于信息传递和峰值聚类的自适应社区发现算法[J].重庆大学学报,2018,41(11):76-83.

复制
分享
文章指标
  • 点击次数:816
  • 下载次数: 1016
  • HTML阅读次数: 1083
  • 引用次数: 0
历史
  • 收稿日期:2017-04-20
  • 在线发布日期: 2018-12-01
文章二维码