假塑性流体液滴撞击壁面上的铺展的格子Boltzmann模拟
作者:
基金项目:

国家自然科学基金资助项目(11572062);长江学者和创新团队发展计划资助项目(IRT_17R112)。


Simulation of shear-thinning droplets impact on solid surfaces by using Lattice Boltzmann method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    流体液滴在壁面上的铺展与沉积在工业应用中存在广泛应用,研究非牛顿流体特性对液滴铺展的影响具有重要的实际意义。基于相场法建立了非牛顿幂律流体与牛顿流体的两相流格子Boltzmann模型,引入包括接触角影响的边界条件,模拟了假塑性流体在幂律指数(n)0.5~1.0以及韦伯数(We)5~45时液滴撞击壁面的铺展过程。结果表明:相对于牛顿流体,幂律流体的非牛顿特性会抑制液滴的铺展,且n越小,越有利于液滴沉积。此外,韦伯数越大,液滴越快地达到稳定。

    Abstract:

    The droplet spreading and deposition appear widely in industrial applications, and it is of practical significance to study the effect of non-Newtonian rheology on droplets impact on solid surfaces. In this research, we developed a two-phase lattice Boltzmann model based on the phase field method for power-law fluid flows. By introducing a contact angle condition, power-law droplets impact on solid surfaces was investigated, and the effects of power exponent n (0.5 ≤ n ≤ 1.0) and Weber number We (5 ≤ We ≤ 45) on shear-thinning droplets impact were evaluated. The results indicate that power-law liquid inhibits the droplet spreading and splashing, and it becomes easier for deposition with the decrease of n. In addition, droplets are easier to reach stationary state as weber number increases.

    参考文献
    [1] Son Y, Kim C. Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 162(1/2/3):78-87.
    [2] Bergeron V, Bonn D, Martin J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405(6788):772-775.
    [3] Dressler D M, Li L K B, Green S I, et al. Newtonian and non-Newtonian spray interaction with a high-speed moving surface[J]. Atomization & Sprays, 2009, 19(1):19-39.
    [4] Healy W M, Hartley J G, Abdel-Khalik S I. On the validity of the adiabatic spreading assumption in droplet impact cooling[J]. International Journal of Heat & Mass Transfer, 2001, 44(20):3869-3881.
    [5] Yarin A L. Drop impact dynamics:Splashing, spreading, receding, bouncing…[J]. Annual Review of Fluid Mechanics, 2006, 38(1):159-192.
    [6] Bertola V. Some applications of controlled drop deposition on solid surfaces[J]. Recent Patents on Mechanical Engineering, 2008, 1(3):167-174.
    [7] Jung S, Hoath S D, Hutchings I M. The role of viscoelasticity in drop impact and spreading for inkjet printing of polymer solution on a wettable surface[J]. Microfluidics and Nanofluidics, 2013, 14(1/2):163-169.
    [8] Bertola V. Dynamic wetting of dilute polymer solutions:The case of impacting droplets[J]. Advances in Colloid & Interface Science, 2013, 193/194:1-11.
    [9] Huh H K, Jung S, Seo K W, et al. Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces[J]. Microfluidics and Nanofluidics, 2015, 18(5/6):1221-1232.
    [10] Wang Y L, Minh D Q, Amberg G. Dynamic wetting of viscoelastic droplets[J]. Physical Review E, 2015, 92(4).
    [11] Izbassarov D, Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface[J]. Physical Review Fluids, 2016, 1(2):023302.
    [12] Liang Z P, Wang X D, Lee D J, et al. Spreading dynamics of power-law fluid droplets[J]. Journal of Physics:Condensed Matter, 2009, 21(46):464117.
    [13] Liang Z P, Wang X D, Duan Y Y, et al. Energy-based model for capillary spreading of power-law liquids on a horizontal plane[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 403(11):155-163.
    [14] Wang Y, Zhu K Q. A study of dynamic contact angles of shear-thickening power-law fluids[J]. Physics of Fluids, 2014, 26(5):739-423.
    [15] 闵琪, 段远源, 王晓东, 等. 非牛顿流体液滴铺展过程的格子Boltzmann模拟[J]. 热科学与技术, 2013, 12(4):335-341. Min Qi, DUAN Yuanyuan, WANG Xiaodong, et al. Lattice Boltzmann simulation of droplet spreading of non-Newtonian fluid[J]. Thermal Science and Technology, 2013, 12(4):335-341. (in Chinese)
    [16] Iwamatsu M. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach[J]. Physical Review E, 2017, 96(4):049902.
    [17] Aharonov E, Rothman D H. Non-Newtonian flow (through porous media):A lattice-Boltzmann method[J]. Geophysical Research Letters, 1993, 20(8):679-682.
    [18] Gabbanelli S, Drazer G, Koplik J. Lattice Boltzmann method for non-Newtonian (power-law) fluids[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(4):046312.
    [19] Sullivan S P, Gladden L F, Johns M L. Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 133(2/3):91-98.
    [20] Yoshino M, Hotta Y, Hirozane T, et al. A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 147(1/2):69-78.
    [21] Wang C H, Ho J R. A lattice Boltzmann approach for the non-Newtonian effect in the blood flow[J]. Computers & Mathematics with Applications, 2011, 62(1):75-86.
    [22] 刘儒勋, 舒其望. 计算流体力学的若干新方法[M]. 北京:科学出版社, 2003. LIU Ruxun, SHU Qiwang. Several new methods of computational fluid mechanics[M]. Beijing:Science Press, 2003.
    [23] Takada N, Tomiyama A. A numerical method for two-phase flow based on a phase-field model[J]. JSME International Journal Series B, 2006, 49(3):636-644.
    [24] Boyd J, Buick J, Green S. A second-order accurate lattice Boltzmann non-Newtonian flow model[J]. Journal of Physics A:Mathmatical and General, 2006, 39(46):14241-14247.
    [25] Liu H H, Valocchi A J, Zhang Y H, et al. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2013, 87:013010.
    [26] Qiao L, Zeng Z, Xie H Q, et al. Modeling thermocapillary migration of interfacial droplets by a hybrid lattice Boltzmann finite difference scheme[J]. Applied Thermal Engineering, 2018, 131:910-919.
    [27] Fakhari Kahaki A. Phase-field modeling of multiphase flows using the lattice Boltzmann method with adaptive mesh refinement[D]. Philadelphia:University of Pennsylvania, 2015.
    [28] Ding H, Spelt P D. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2007, 75(4):046708.
    [29] Chai Z H, Shi B C, Lin Z. Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method[J]. Chinese Physics. B, 2006, 15(8):1855-1863.
    [30] Neofytou P. A 3rd order upwind finite volume method for generalised Newtonian fluid flows[J]. Advances in Engineering Software, 2005, 36(10):664-680.
    [31] Winkels K G, Weijs J H, Eddi A, et al. Initial spreading of low-viscosity drops on partially wetting surfaces[J]. Physical Review E, 2012, 85(5):055301-055301.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周平,曾忠,乔龙.假塑性流体液滴撞击壁面上的铺展的格子Boltzmann模拟[J].重庆大学学报,2018,41(12):1-9.

复制
分享
文章指标
  • 点击次数:1104
  • 下载次数: 858
  • HTML阅读次数: 573
  • 引用次数: 0
历史
  • 收稿日期:2018-07-01
  • 在线发布日期: 2018-12-27
文章二维码