响应面法探究花生壳炭吸附水中镍离子的最优改性条件
作者:
中图分类号:

TQ424.1

基金项目:

重庆市技术创新与应用示范(社会民生类)一般项目(cstc2018jscx-msybX0308)。


Response surface methodology study on optimal modification conditions for Ni(Ⅱ) adsorption in the water by peanut shell carbon
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为提高对水中镍离子的去除效率,获得高效且成本低廉的吸附材料,以废弃的花生壳为原料自制花生壳炭,并用高锰酸钾和氢氧化钾对其进行改性。利用Box-Behnken中心组合设计实验,采用响应面法得到花生壳炭吸附镍离子的最优改性条件。通过SEM、BET等分析方法对改性前后的花生壳炭进行表征,了解其形貌与结构的变化,并对吸附反应前后的改性花生壳炭进行FTIR分析,初步探讨其对Ni(Ⅱ)的吸附机理。结果表明,最优的改性条件为:热处理温度361℃,氢氧化钾与炭的质量比2.5,高锰酸钾的质量浓度0.76%。用该条件下改性的花生壳炭吸附水中的镍离子,得到的吸附量为85.02 mg/g,是改性前的15.6倍,吸附性能优越,具有良好的实用价值。FTIR结果表明-OH、-NH2是参与吸附反应的主要官能团,与Ni(Ⅱ)发生共沉淀与络合反应。除此之外,阳离子-π作用也是改性花生壳炭对Ni(Ⅱ)的吸附机制之一。

    Abstract:

    To improve the removal efficiency of nickel in the water and obtain a kind of adsorbent with low-cost and high efficiency, peanut shell carbon derived from waste peanut shell was produced and modified by potassium permanganate(KMnO4) and potassium(KOH). Box-Behnken design and response surface methodology were used to optimize the modification conditions of the carbon. SEM and BET were employed to characterize the morphological and structural changes of the peanut shell carbon before and after the modification. The modified peanut shell carbon before and after Ni(Ⅱ) adsorption was analyzed by FTIR to preliminarily discuss its adsorption mechanism. The results show that the best modification conditions are:temperature 361℃, the mass ratio of KOH to carbon 2.5 and the concentration of KMnO4 0.76%. Under these best modification conditions, the maximum adsorption capacity of nickel is 85.02 mg/g, which is 15.6 times higher than that of the carbon without modification, proving its superior adsorption performance and pragmatic value. The results of FTIR show that -OH and -NH2 are the main functional groups in the Ni(Ⅱ) adsorption process and they participate in the co-precipitation and complexation reactions with Ni(Ⅱ). Besides, the effect of cation-π is also one of the adsorption mechanisms of modified peanut shell carbon to Ni(Ⅱ).

    参考文献
    [1] International Nickel Study Group. World Nickel Statistics[DB/OL].[2017-11-25] (2018-05-21) http://www.insg.org/prodnickel.aspx.
    [2] Li H X, Ji H B, Shi C J, et al. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health[J]. Chemosphere, 2017, 172:505-515.
    [3] Gissi F, Stauber J L, Binet M T, et al. A review of nickel toxicity to marine and estuarine tropical biota with particular reference to the South East Asian and Melanesian region[J]. Environmental Pollution, 2016, 218:1308-1323.
    [4] Shih Y J, Lin C P, Huang Y H. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J]. Separation & Purification Technology, 2013, 104(4):100-105.
    [5] Moghbeli M R, Khajeh A, Alikhani M. Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions:Preparation, characterization and adsorption studies[J]. Chemical Engineering Journal, 2017, 309:552-562.
    [6] Yurekli Y, Yildirim M, Aydin L, et al. Filtration and removal performances of membrane adsorbers[J].Journal of Hazardous Materials, 2017, 332:33-41.
    [7] Farrokhpay S, Filippov L. Challenges in processing nickel laterite ores by flotation[J]. International Journal of Mineral Processing, 2016, 151:59-67.
    [8] Rashid A, Bhatti H N, Lqbal M, et al. Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption:A mechanistic study[J]. Ecological Engineering, 2016, 91:459-471.
    [9] 赵梦奇,司马义·努尔拉,米红宇.基于多孔碳材料对重金属离子吸附性能的研究进展[J].材料科学与工程学报,2014,32(2):301-306. ZHAO Mengqi, Ismayil Nurulla, MI Hongyu. Research progress on adsorption properties of porous carbon materials to heavy metal ions[J]. Journal of Materials Science & Engineering, 2014, 32(2):301-306. (in Chinese)
    [10] Hodgson E, Lewys-James A, Rao Ravella S, et al. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks[J]. Bioresource Technology, 2016,214:574-581.
    [11] Ahmed M B, Zhou J L, Ngo H H, et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource Technology, 2016, 214:836-851.
    [12] Li S J, Han K H, Li J X, et al. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation[J]. Microporous and Mesoporous Materials, 2017, 243:291-300.
    [13] Syed-Hassan S A S, Zai ni M S M. Optimization of the preparation of activated carbon from palm kernel shell for methane adsorption using Taguchi orthogonal array design[J]. Korean Journal of Chemical Engineering, 2016, 33(8):2502-2512.
    [14] 肖怀秋,李玉珍.微生物培养基-优化方法研究进展[J].酿酒科技,2010(1):90-94. XIAO Huaiqiu, LI Yuzhen. Research progress in the optimization of microbial culture medium[J]. Liquor-Making Science&Technology, 2010(1):90-94. (in Chinese)
    [15] Khobragade M U, Nayak A K, Pal A. Application of response surface methodology to evaluate the removal efficiencies of Mn(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ) by surfactant-modified alumina[J]. Clean Technologies Environmental Policy, 2016, 18(4):1003-1020.
    [16] Demim S, Drouiche N, Aouabed A, et al. Study of heavy metal removal from heavy metal mixture using the CCD method[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(2):512-520.
    [17] Ghani Z A, Yusoff M S, Zaman N Q, et al. Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate[J]. Waste Management, 2017, 62:177-187.
    [18] Senthilkumar T, Chattopadhyay S K, Miranda L R. Optimization of activated carbon preparation from pomegranate peel(punica granatum peel) using RSM[J]. Chemical Engineering Communications, 2017, 204(2):238-248.
    [19] 中国环境监测总站.水质镍的测定丁二酮肟分光光光度法GB 11910-1989[S].北京:中国环境科学出版社,1989. China National Environmental Monitoring Centre. Water quality determination of nickel dimethylglyoxime spectrophotometric method GB 11910-1989[S]. Beijing:China Environmental Science Press, 1989. (in Chinese)
    [20] 王向前,胡学玉,陈窈君,等.生物炭及改性生物炭对水环境中重金属的吸附固定作用[J].环境工程,2016,34(12):32-37. WANG Xiangqian, HU Xueyu, CHEN Yaojun, et al. Effect of biochar and modified biochar on the adsorption and immobilization of heavy metals in water environment[J]. Environmental Engineering, 2016, 34(12):32-37. (in Chinese)
    [21] Tan X F, Liu Y G, Zeng G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125:70-85.
    [22] Song Z G, Lian F, Yu Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242:36-42.
    [23] Faheem, Yu H, Liu J, et al. Preparation of MnOx-loaded biochar for Pb2+ removal:Adsorption performance and possible mechanism[J].Journal of the Taiwan Institute of Chemical Engineers, 2016, 66:313-320.
    [24] 傅瑞琪,刘榆,楼子墨,等.氨基改性猪热解炭化物及对水中微量Cu(Ⅱ)和Cu(Ⅱ)-Cit的去除研究[J].农业环境科学学报,2016,35(10):1998-2004. FU Ruiqi, LIU Yu, LOU Zimo, et al. Aminized pig biochar and its removals of trace Cu(Ⅱ) and Cu(Ⅱ)-Cit from aqueous solution[J]. Journal of Agro-Environment Science, 2016, 35(10):1998-2004. (in Chinese)
    [25] Gan C, Liu Y G, Tan X F, et al. Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution[J]. Rsc Advances, 2015, 5(44):35107-35115.
    [26] Inyang M I, Gao B, Yao Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J].Critical Reviews in Environmental Science & Technology, 2016, 46(4):406-433.
    [27] Mukherjee A, Zimmerman A R, Harris W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163(3/4):247-255.
    [28] Lian F, Xing B, Zhu L. Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers[J]. Journal of Colloid & Interface Science, 2011, 360(2):725-730.
    [29] Xing S T, Hu C, Qu J H, et al. Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone[J].Environmental Science & Technology, 2008, 42(9):3363-3368.
    [30] Yang G X, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J].Water Research, 2014, 48:396-405.
    [31] Panda G C, Das S K, Bandopadhyay T S, et al. Adsorption of nickel on husk of Lathyrus sativus:Behavior and binding mechanism[J]. Colloids and Surfaces B:Biointerfaces, 2007, 57(2):135-142.
    [32] Yakout S M. Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics[J]. Bioremediation Journal, 2015, 19(2):171-182.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

安强,蒋韵秋,吴丹青,陈泫冰.响应面法探究花生壳炭吸附水中镍离子的最优改性条件[J].重庆大学学报,2018,41(12):46-54.

复制
分享
文章指标
  • 点击次数:838
  • 下载次数: 795
  • HTML阅读次数: 492
  • 引用次数: 0
历史
  • 收稿日期:2018-07-01
  • 在线发布日期: 2018-12-27
文章二维码