考虑概率潮流的分布式电源优化配置
作者:
中图分类号:

TM712

基金项目:

国家自然科学基金资助项目(51574087)。


Optimal configuration of distributed generation considering probability power flow
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解决电动汽车和分布式电源并网为电力系统带来的较强的随机性、间歇性和相关性的问题,以分布式电源和电动汽车的概率模型为基础,建立了以分布式电源总费用、供电可靠性和有功网损为目标函数的优化配置模型,将概率潮流计算嵌入基于成功历史的自适应参数差分进化算法求解目标函数。采用无迹变换利用输入随机变量的均值和协方差近似描述系统状态变量统计特性,直接方便地处理具有不确定性的随机变量。然后利用径向基神经网络求解功率方程,避免了计算雅可比矩阵和偏导,减少了算法运行时间。最后采用基于成功历史的自适应参数差分进化法并行计算多目标函数。通过IEEE33节点配电系统进行仿真,验证了该方法的有效性和高效性,节约了规划成本。

    Abstract:

    In order to solve the problem caused by paralleling operation of electric vehicles and distributed power grids, which brings strong randomness, intermittent and correlation to power system. Based on the probabilistic model of distributed power supply and electric vehicle, an optimal configuration model taking distributed power supply total cost, power supply reliability and active network loss as the objective function was established, embeding the probabilistic power flow calculation into the adaptive parameter difference based on the success history. The evolutionary algorithm was used to solve the objective function. The unscented transformation was used to describe the statistical properties of the system state variables by using the mean and covariance of the input random variables to directly deal with the random variables with uncertainty. Then RBF neural network was used to solve the power equation, which avoided calculating the Jacobian matrix and partial derivative, reducing the running time of the algorithm. Finally, the multi-objective function was calculated in parallel using the adaptive parameter differential evolution method based on the success history. The simulation of the IEEE33 node power distribution system verified the effectiveness and efficiency of the method and the method can save planning costs.

    参考文献
    [1] 谢维兵, 刘敏, 周晓霞,等. 含电压逆变型分布式电源配电网的短路电流计算[J]. 重庆大学学报, 2017, 40(2):70-79. XIE Weibing, LIU Min, ZHOU Xiaoxia, et al. Short-circuit current calculation of distributed power distribution network with voltage inverter[J]. Journal of Chongqing University, 2017, 40(2):70-79.(in Chinese)
    [2] 周湶, 曹立平, 李剑,等. 改进遗传算法在分布式电源选址定容中的应用[J]. 重庆大学学报, 2014, 37(5):22-28. ZHOU Wei, CAO Liping, LI Jian, et al. Application of improved genetic algorithm in distributed power source location and volume[J]. Journal of Chongqing University, 2014, 37(5):22-28.(in Chinese)
    [3] 熊强, 陈维荣, 张雪霞,等. 考虑多风电场相关性的场景概率潮流计算[J]. 电网技术, 2015, 39(8):2154-2159. XIONG Qiang, CHEN Weirong, ZHANG Xuexia, et al. Calculation of probability power flow in scenarios considering the correlation of wind farms[J]. Power System Technology, 2015, 39(8):2154-2159.(in Chinese)
    [4] 代景龙, 韦化, 鲍海波,等. 基于无迹变换含分布式电源系统的随机潮流[J]. 电力自动化设备, 2016, 36(3):86-93. DAI Jinglong, WEI Hua, BAO Haibo, et al. Stochastic power flow based distributed distributed power system with no trace transform[J]. Electric Power Automation Equipment, 2016,36(3):86-93.(in Chinese)
    [5] Baghaee H R, Mirsalim M, Gharehpetian G B, et al. Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/PV units and plug-in hybrid electric vehicles[J]. Simulation Modelling Practice & Theory, 2017, 72(C):51-68.
    [6] 刘文霞, 徐慧婷. 考虑电压控制成本的分布式电源优化配置[J]. 电网技术, 2016, 40(10):2998-3005. LIU Wenxia, XU Huiting. Distributed power supply optimal configuration considering voltage control cost[J]. Power System Technology, 2016, 40(10):2998-3005.(in Chinese)
    [7] 彭显刚, 林利祥, 刘艺,等. 计及电动汽车和可再生能源不确定因素的多目标分布式电源优化配置[J]. 电网技术, 2015, 39(8):2188-2194. PENG Xiangang, LIN Lixiang, LIU Yi, et al. Optimization of multi-objective distributed generation considering electric vehicles and uncertainties of renewable energy[J]. Power System Technology, 2015, 39(8):2188-2194.(in Chinese)
    [8] 盛万兴, 叶学顺, 刘科研,等. 基于NSGA-Ⅱ算法的分布式电源与微电网分组优化配置[J]. 中国电机工程学报, 2015, 35(18):4655-4662. SHENG Wanxing, YE Xueshun, LIU Keyan, et al. Optimized allocation of DGs and microgrids based on NSGA-Ⅱ algorithm[J]. Proceeding of the CSEE, 2015,35(18):4655-4662.(in Chinese)
    [9] 周辛南, 柯德平, 孙元章. 基于配电网静态电压质量机会性约束的可再生能源分布式发电容量规划[J]. 电力自动化设备, 2015, 35(9):143-149. ZHOU Xinnan, KE Deping, SUN Yuanzhang. Distributed energy generation capacity planning based on chance constraints of static voltage quality in distribution network[J]. Electric Power Automation Equipment, 2015, 35(9):143-149.(in Chinese)
    [10] 吕智林, 谭颖, 李捷,等. 基于Markov-ELM的独立混合微网分布式电源多目标容量优化配置[J]. 中国电机工程学报, 2017(7):1927-1936. LV Zhilin, TAN Ying, LI Jie, et al. Multi-objective capacity optimization of independent hybrid micro-grid distributed generation based on Markov-ELM[J]. Proceedings of the CSEE, 2017(7):1927-1936.(in Chinese)
    [11] 蔡德福, 钱斌, 陈金富,等. 含电动汽车充电负荷和风电的电力系统动态概率特性分析[J]. 电网技术, 2013, 37(3):590-596. CAI Defu, QIAN Bin, CHEN Jinfu, et al. Analysis on dynamic probabilistic characteristics of power system with electric vehicle charging load and wind power[J]. Power System Technology, 2013, 37(3):590-596.(in Chinese)
    [12] 彭显刚, 林利祥, 刘艺,等. 基于纵横交叉[XC半字线.TIF,JZ]拉丁超立方采样蒙特卡洛模拟法的分布式电源优化配置[J]. 中国电机工程学报, 2015, 35(16):4077-4085. PENG Xiangang, LIN Lixiang, LIU Yi, et al. Optimal distributed generator allocation method based on correlation latin hypercube sampling monte carlo simulation embedded crisscross optimization algorithm[J]. Proceedings of the CSEE, 2015,35(16):4077-4085.(in Chinese)
    [13] Aien M, Rashidinejad M, Firuz-Abad M F. Probabilistic optimal power flow in correlated hybrid wind-PV power systems:A review and a new approach[J]. Renewable and Sustainable Energy Reviews, 2015, 41:1437-1446.
    [14] Zimmerman R D, Murillo-Sanchez C E, Thomas R J. MATPOWER's extensible optimal power flow architecture[C]//Power & Energy Society General Meeting, 2009. PES'09. IEEE. IEEE, 2009:1-7.
    [15] Tanabe R, Fukunaga A. Success-history based parameter adaptation for Differential Evolution[C]//Evolutionary Computation. IEEE, 2013:71-78.
    [16] Zhang J, Sanderson A C. JADE:Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5):945-958.
    [17] Demuth H, Beale M. Neural network toolbox-for use with mATLAB[J]. Matlab Users Guide the Math Works, 1995, 21(15):1225-1233.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张忠伟,王金玉,张建波,杨洋.考虑概率潮流的分布式电源优化配置[J].重庆大学学报,2018,41(12):83-91.

复制
分享
文章指标
  • 点击次数:803
  • 下载次数: 1011
  • HTML阅读次数: 528
  • 引用次数: 0
历史
  • 收稿日期:2018-05-10
  • 在线发布日期: 2018-12-27
文章二维码