三轴重载汽车转向制动协同控制仿真分析
作者:
中图分类号:

U461.6

基金项目:

国家自然科学基金(面上)项目(11572207,11472180);河北省自然基金项目(A2016210103)。


Simulation analysis on steer-brake coordinated control of three-axle heavy-duty vehicle
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提高三轴重载汽车在转向制动工况下的安全性能,基于TruckSim汽车仿真软件,搭建了三轴重载汽车整车模型。对三轴汽车在转向制动工况下的力学特性进行了分析,基于分析结果设计了削减制动力的三轴汽车转向制动协同控制器。对于车辆处于不足转向的情况,设计了滑移率分配的模糊控制器。采用TruckSim与Simulink联合仿真,对ABS控制和协同控制在转向制动工况下的控制效果进行了探讨。仿真结果表明,在转向制动工况下,与ABS控制器相比,协同控制器提高了三轴重载汽车转向制动工况下的操纵稳定性和制动安全性。

    Abstract:

    A three-axle heavy-duty vehicle model was built based on the TruckSim vehicle simulation software in order to improve the safety performance of the vehicle under the steering braking condition.The mechanical properties of three-axle vehicles under steering braking conditions were analyzed.Based on the analysis results, a three-axis vehicle steering brake cooperative controller was designed by reducing braking force.A fuzzy controller for slip ratio distribution was designed for the case that the vehicle was understeering.The control effect of ABS control and coordinated control under steering braking conditions were examined by using co-simulation with TruckSim and Simulink.The simulation results show that the coordinated controller improves the steering stability and braking safety of the three-axle heavy-duty vehicle compared with the ABS controller under steering braking conditions.

    参考文献
    [1] Alam A, Besselink B, Turri V, et al. Heavy-duty vehicle platooning for sustainable freight transportation:a cooperative method to enhance safety and efficiency[J]. IEEE Control Systems, 2015, 35(6):34-56.
    [2] Islam M M, He Y P, Zhu S J, et al. A comparative study of multi-trailer articulated heavy-vehicle models[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2015, 229(9):1200-1228.
    [3] 李韶华, 吴金毅. 重型汽车横摆稳定性的差动制动模糊控制方法[J].科技导报, 2014, 32(Z2):91-96. LI Shaohua, WU Jinyi. A fuzzy-logic controller design for heavy vehicle based on co-simulation[J]. Science and Technology Review, 2014, 32(Z2):91-96.(in Chinese)
    [4] 刘福建. 基于TruckSim的卡车防抱死制动系统研究[D]. 长沙:湖南大学, 2016.LIU Fujian. Research on the truck anti-lock braking system based on TruckSim[D]. Changsha:Hunan University, 2016.(in Chinese)
    [5] Kanchwala H, Wideberg J, Alba C B, et al. Control of an independent 4WD electric vehicle by DYC method[J]. International Journal of Vehicle Systems Modelling and Testing, 2015, 10(2):168.
    [6] 吴明阳, 冀杰. 电动汽车横摆力矩拉盖尔函数模型预测控制[J]. 重庆大学学报, 2018, 41(1):61-69.WU Mingyang, JI Jie. Yaw moment control of electric vehicles based on model predictive theory using Laguerre functions[J]. Journal of Chongqing University, 2018, 41(1):61-69.(in Chinese)
    [7] 李以农, 胡一明, 邹桃. 轮毂电机驱动电动汽车横摆稳定性控制[J]. 重庆大学学报, 2017, 40(12):24-34.LI Yinong, HU Yiming, ZOU Tao. Yaw stability control of wheel-drive electric vehicle[J]. Journal of Chongqing University, 2017, 40(12):24-34.(in Chinese)
    [8] 杨炜, 马浩越, 郭祥靖. 基于TruckSim与Simulink联合仿真的半挂汽车列车横向稳定性控制[J].中国科技论文, 2018, 13(4):390-398.YANG Wei, MA Haoyue, GUO Xiangjing. Semi-trailer lateral stability control based on TruckSim and Simulink co-simulation[J]. China Sciencepaper, 2018, 13(4):390-398.(in Chinese)
    [9] 陈松, 夏长高, 李胜永, 等. 汽车ESP系统的混杂切换控制研究[J].机械科学与技术, 2018, 37(4):614-622.CHEN Song, XIA Changgao, LI Shengyong, et al. Hybrid control of automobile's electronic stability program[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4):614-622.(in Chinese)
    [10] 李晗. 主动前轮转向和防抱死制动的集成控制[D]. 沈阳:沈阳工业大学, 2016.LI Han. The integrated control of active front steering system and anti-lock braking system[D]. Shenyang:Shenyang University of Technology, 2016.(in Chinese)
    [11] Morrison G, Cebon D. Combined emergency braking and turning of articulated heavy vehicles[J]. Vehicle System Dynamics, 2017, 55(5):725-749.
    [12] Li B Y, Du H P, Li W H, et al. Side-slip angle estimation based lateral dynamics control for omni-directional vehicles with optimal steering angle and traction/brake torque distribution[J]. Mechatronics, 2015, 30:348-362.
    [13] Zhang H, Wang J M. Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1):489-494.
    [14] Aksjonov A, Augsburg K, Vodovozov V. Design and simulation of the robust ABS and ESP fuzzy logic controller on the complex braking maneuvers[J]. Applied Sciences, 2016, 6(12):382.
    [15] Liu Y Q, Liu L P. Stability control and simulation analysis of automobile hydraulic system ESP[C]//Proceedings of the 20165th. International Conference on Advanced Materials and Computer Science. Atlantis Press, 2016:1015-1020.
    [16] 张向文, 王飞跃, 高彦臣. 轮胎稳态模型的分析综述[J]. 汽车技术, 2012(2):1-7.ZHANG Xiangwen, WANG Feiyue, GAO Yanchen. Analysis of the tire steady-state models[J]. Automobile Technology, 2012(2):1-7.(in Chinese)
    [17] 余卓平, 高晓杰, 张立军. 用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J]. 汽车工程, 2006, 28(9):844-848.YU Zhuoping, GAO Xiaojie, ZHANG Lijun. A study on coordination of direct yaw moment control and variable wheel slip control for vehicle stability[J]. Automotive Engineering, 2006, 28(9):844-848.(in Chinese)
    [18] 谢兆夫. 基于动力学模型的三轴汽车防侧翻控制系统研究[D]. 长沙:湖南大学, 2016.XIE Zhaofu. A research on anti-rollover control systems of three-axle vehicle based on dynamic model[D]. Changsha:Hunan University, 2016. (in Chinese)
    相似文献
    引证文献
引用本文

贾长旺,路永婕,杨绍普,张广峰.三轴重载汽车转向制动协同控制仿真分析[J].重庆大学学报,2019,42(2):11-19.

复制
分享
文章指标
  • 点击次数:833
  • 下载次数: 1178
  • HTML阅读次数: 523
  • 引用次数: 0
历史
  • 收稿日期:2018-10-06
  • 在线发布日期: 2019-03-08
文章二维码