轮毂驱动电动汽车振动负效应及抑制方法
作者:
中图分类号:

U270.1

基金项目:

国家重点研发计划(2016YFB0100904);国家自然科学基金资助项目(51875061)。


Negative vibration effects of in-wheel motor electric vehicles and the method for suppressing them
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    四轮独立驱动电动汽车通过轮毂电机直接驱动车辆,电磁力输出波动直接作用于车轮和悬架,将导致车辆的动力学性能恶化。利用傅立叶级数法,建立考虑不平衡径向力的悬架系统机电耦合模型。在此基础上,提出了电磁主动悬架多目标粒子群优化设计方法,以抑制轮毂电机驱动电动汽车的振动负效应问题。研究结果表明:通过对主动悬架构型以及控制器参数的多目标优化设计,能有效削弱振动负效应,改善电动汽车的安全性和舒适性。

    Abstract:

    The four-wheel electric vehicles drive the vehicle independently through the in-wheel motor, which causes the electromagnetic force output fluctuation directly acts on the wheels and the suspension, resulting in deterioration of the vehicle's dynamic performance. The Fourier series method was adopted in this research to develop an in-wheel motor-electric vehicle (IWM-EV) co-model with active suspension.And then, a co-operative parameter optimization via (multi-objective particle swarm optimization) MOPSO was proposed to weaken the negative vibration effects caused by electromechanical coupling in in-wheel motor system. The simulation results has testified its effectiveness.

    参考文献
    [1] Wang Y Y, Li P F, Ren G Z. Electric vehicles with in-wheel switched reluctance motors:Coupling effects between road excitation and the unbalanced radial force[J]. Journal of Sound and Vibration, 2016, 372:69-81.
    [2] Wang Y Y, Li Y N, Sun W, et al. Effect of the unbalanced vertical force of a switched reluctance motor on the stability and the comfort of an in-wheel motor electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2015, 229(12):1569-1584.
    [3] Tan D, Lu C. The influence of the magnetic force generated by the in-wheel motor on the vertical and lateral coupling dynamics of electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):4655-4668.
    [4] Sun W, Li Y N, Huang J Y, et al. Vibration effect and control of In-Wheel Switched Reluctance Motor for electric vehicle[J]. Journal of Sound and Vibration, 2015, 338:105-120.
    [5] Luo Y T, Tan D. Study on the dynamics of the in-wheel motor system[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8):3510-3518.
    [6] Tan D, Lu C, Ren C B. Optimal matching between the suspension and the rubber bushing of the in-wheel motor system[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2015, 229(6):758-769.
    [7] 王艳阳, 李以农, 裴金顺, 等. 车用电磁悬架能量转换特性的功率流分析方法[J]. 重庆大学学报, 2013, 36(5):1-7.WANG Yanyang, LI Yinng, PEI Jinshun, et al. Energy conversion analysis of vehicle electromagnetic suspension using power flow method[J]. Journal of Chongqing University, 2013, 36(5):1-7.(in Chinese)
    [8] Xue X D, Cheng K W E, Ng T W, et al. Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9):2980-2987.
    [9] Lin J, Cheng K W E, Zhang Z, et al. Experimental investigation of in-wheel switched reluctance motor driving system for future electric vehicles[C]//20093rd International Conference on Power Electronics Systems and Applications, May 20-22, 2009, Hong Kong, China. IEEE, 2009:1-6.
    [10] Xue X D, Cheng K W E, Lin J K, et al. Optimal control method of motoring operation for SRM drives in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3):1191-1204.
    [11] Wong K F, Cheng K W E, Ho S L. Simulation of switched reluctance motor based on a combination of circuit-oriented and signal-oriented approaches using Matlab/SimPowerSystems[J]. Electric Power Components and Systems, 2007, 35(2):205-219.
    [12] Fahimi B, Suresh G, Mahdavi J, et al. A new approach to model switched reluctance motor drive application to dynamic performance prediction, control and design[C]//PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. no.98CH36196), May 22-22, 1998, Fukuoka, Japan. IEEE, 1998:2097-2102.
    [13] Husain I, Ehsani M. Torque ripple minimization in switched reluctance motor drives by PWM current control[J]. IEEE Transactions on Power Electronics, 1996, 11(1):83-88.
    [14] Mahdavi J, Suresh G, Fahimi B, et al. Dynamic modeling of nonlinear SRM drive with Pspice[C]//IAS'97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, October 5-9, 1997, New Orleans, LA, USA. IEEE, 1997:661-667.
    [15] Krishnamurthy M, Edrington C S, Emadi A, et al. Making the case for applications of switched reluctance motor technology in automotive products[J]. IEEE Transactions on Power Electronics, 2006, 21(3):659-675.
    [16] Cameron D E, Lang J H, Umans S D. The origin of acoustic noise in variable-reluctance motors[C]//Conference Record of the IEEE Industry Applications Society Annual Meeting, October 1-5, 1989, San Diego, CA, USA. IEEE,1989:108-115.
    [17] Lu S B, Li Y N, Choi S B. Contribution of chassis key subsystems to rollover stability control[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2012, 226(4):479-493.
    引证文献
引用本文

李哲,郑玲,胡一明,李以农.轮毂驱动电动汽车振动负效应及抑制方法[J].重庆大学学报,2019,42(2):20-29.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-08
  • 在线发布日期: 2019-03-08
文章二维码