Si、V对Fe-Al-Cr合金抗高温氧化性的影响
作者:
中图分类号:

TG13


Effect of Si and V on high-temperature oxidation resistance of Fe-Al-Cr alloys
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文通过900℃ 10 h高温氧化实验测试添加不同合金元素(Si、V)的Fe-Al-Cr系高铝钢的抗高温氧化性。经测试,Fe-Al-Cr-Si的抗高温氧化性优于Fe-Al-Cr与Fe-Al-Cr-V合金。实验发现Fe-Al-Cr合金在高温环境下经历氧化物生成-脱落-基体氧化的动态过程,其抗高温氧化性主要取决于Fe/Al2O3界面的结合强度,而不是与铝含量呈正相关。通过密度泛函理论计算合金元素对金属/氧化物界面结合能的影响,解释了Si、V对Fe-Al-Cr系合金耐高温氧化性影响的机理:Fe/Al2O3界面结合力来自Fe-O的共价作用,Si使界面结合能从-7.16eV降低至-7.41eV,使Al2O3与基体结合更加紧密,改善了合金的高温抗氧化性;V提高界面结合能至-6.06eV,使界面容易失效,导致Al2O3的脱落,破坏了合金抗高温氧化性。

    Abstract:

    In this paper, the high-temperature oxidation resistance of Fe-Al-Cr high-aluminium steel with different alloying elements (Si, V) was tested by high-temperature oxidation test at 900℃ for 10 h. The high-temperature oxidation resistance of Fe-Al-Cr-Si was better than that of Fe-Al-Cr and Fe-Al-Cr-V alloys. Experiments revealed that the dynamic process of oxide formation, shedding and matrix oxidation occurs in Fe-Al-Cr alloy in a high-temperature environment. The high-temperature oxidation resistance of Fe-Al-Cr alloy mainly depends on the bonding strength of Fe/Al2O3 interface, rather than the positive correlation with the content of Al. The effect of alloying elements on interfacial bonding energy of metal/oxide was calculated by density functional theory. The mechanism of the effect of Si and V on high-temperature oxidation resistance of Fe-Al-Cr alloys was explained. The interfacial bonding force of Fe/Al2O3 comes from the covalent effect of Fe-O, and Si can reduce the interfacial bonding energy from-7.16 eV to -7.41 eV, which makes the bonding between Al2O3 and matrix more closely. V can increase the interfacial bonding energy to -6.06 eV, which will make the interface easy to fail, lead to the fall off of Al2O3, and destroy the high temperature oxidation resistance of the alloy.

    参考文献
    [1] La P Q, Wang H D, Liu X M, et al. Microstructure and mechanical properties of a large-dimensional bulk nanocrystalline-based Fe-Al-Cr alloy prepared by an aluminothermic reaction casting and followed annealing at 1000℃[J]. Philosophical Magazine, 2013, 93(17):2207-2218.
    [2] 许旭鹏,刘守平,韩校宇,等.Fe-Cr-Al-Si铁素体耐热钢组织结构与抗氧化性[J].材料热处理学报,2017,38(1):106-111.XU Xupeng, LIU Shouping, HAN Xiaoyu, et al. Microstructure and antioxidation mechanism of an Fe-Cr-Al-Si heat resistant steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(1):106-111. (in Chinese)
    [3] Duh J G, Lee J W, Wang C J. Microstructural development in the oxidation-induced phase transformation of Fe-Al-Cr-Mn-C alloys[J]. Journal of Materials Science, 1988, 23(7):2649-2660.
    [4] 于雄, 文光华, 唐萍, 等. B2O3对高铝钢连铸保护渣理化性能的影响[J]. 重庆大学学报, 2011, 34(1):66-71.YU Xiong, WEN Guanghua, TANG Ping, et al. Effect of B2O3 on the physico-chemical properties of mold slag used for high-Al steel[J]. Journal of Chongqing University, 2011, 34(1):66-71.(in Chinese)
    [5] Tolpygo V K, Viefhaus H. Segregation at the Al2O3-FeCrAl interface during high-temperature oxidation[J]. Oxidation of Metals, 1999, 52(1/2):1-29.
    [6] 胡佳,方亮,唐安琼,等.铝合金Ni-Co-P/Si3N4镀层的化学复合镀制备及其硬度[J].重庆大学学报,2011,34(9):128-133.HU Jia, FANG Liang, TANG Anqiong, et al. Ni-Co-P/Si3N4 electroless composite plating and its hardness[J]. Journal of Chongqing University, 2011, 34(9):128-133. (in Chinese)
    [7] 李翠玲,喇培清,刘辉,等.Si对铝热反应法制备的块体纳米晶Fe-Al-Cr,Fe-Al-Mn材料组织和性能的影响[J].粉末冶金材料科学与工程,2011, 16(6):892-899.LI Cuiling,LA Peiqing,LIU Hui, et al. Effect of Si element on microstructure and mechanical properties of bulk nanocrystalline Fe-Al-Cr,Fe-Al-Mn materials prepared by aluminothermic reaction[J]. Materials Science & Engineering of Powder Metallurgy, 2011, 16(6):892-899. (in Chinese)
    [8] 王文明,潘复生,孙旭炜,等.SiCp/Al复合材料界面反应研究现状[J].重庆大学学报(自然科学版), 2004,27(3):108-113.WANG Wenming, PAN Fusheng, SUN Xuwei, et al. Advance in research on interfacial reaction in SiCp/Al composites[J]. Journal of Chongqing University (Natural Science Edition), 2004, 27(3):108-113. (in Chinese)
    [9] 杨明波,潘复生,彭晓东,等.压力铸造对亚共晶Al-11Si-1.8Cu合金的组织细化作用[J].重庆大学学报(自然科学版),2005,28(1):53-55,59.YANG Mingbo, PAN Fusheng, PENG Xiaodong, et al. Structure refining effect of die casting on the hypoeutectic Al-11Si-1.8Cu alloy[J]. Journal of Chongqing University (Natural Science Edition), 2005, 28(1):53-55,59. (in Chinese)
    [10] Pascal C, Parry V, Fedorova E, et al. Breakaway oxidation of austenitic stainless steels induced by alloyed sulphur[J]. Corrosion Science, 2015, 93:100-108.
    [11] Yang S L, Wang F H. Effect of nanocrystallization on sulfur segregation in Fe-Cr-Al alloy during oxidation at 1000℃[J]. Oxidation of Metals, 2006, 65(3/4):195-205.
    [12] Guan W M, Pan Y, Zhang K H, et al. First principle study on the interface of Ag-Ni composites[J]. Rare Metal Materials and Engineering, 2010, 39(8):1339-1343.
    [13] 刘贵立. Fe-Cr-Al合金高温氧化行为电子理论研究[J]. 物理学报, 2010, 59(1):494-498.LIU Guili. An electronic theoretical study of the high-temperature oxidation behavior of Fe-Cr-Al alloy[J]. Acta Physica Sinica, 2010, 59(1):494-498.(in Chinese)
    [14] 谢奉妤,高家诚,王宁.Zn掺杂锐钛矿TiO2的电子结构及光学性质的研究[J].重庆大学学报,2017,40(10):79-86.XIE Fengwu, GAO Jiacheng, WANG Ning. Electronic structure and optical properties of Zn-doped anatase TiO2[J]. Journal of Chongqing University, 2017, 40(10):79-86. (in Chinese)
    [15] 张国英,张辉,魏丹,等. Bi,Sb及稀土元素对AZ91镁合金高温性能影响机理研究[J].物理学报,2009,58(1):444-449.ZHANG Guoying, ZHANG Hui, WEI Dan, et al. The mechanism of the influence of Bi(or Sb) and rare earth on high temperature performance of AZ91 magnesium alloy[J]. Acta Physica Sinica, 2009, 58(1):444-449.(in Chinese)
    [16] 王小宏.Al、Zn、Cd对Mg-Li合金界面结构及性能影响的第一性原理研究[D].太原:太原理工大学,2013.WANG Xiaohong. First principle study on structure and properties of Al, Zn and Cd doping Mg-Li phase interface[D]. Taiyuan:Taiyuan University of Technology, 2013. (in Chinese)
    [17] Hong T, Smith J R, Srolovitz D J. Theory of metal:ceramic adhesion[J]. Acta Metallurgica et Materialia, 1995, 43(7):2721-2730.
    [18] 刘政,谌庆春,郭颂,等. A356-RE合金中稀土铝化合物/初生α相界面二维错配度的计算及验证[J].稀有金属材料与工程,2015,44(4):859-865.LIU Zheng, CHEN Qingchun, GUO Song, et al. Calculation of planar disregistries between compounds of rare earth-Al and primary α phase in A356-RE alloy and its verification[J]. Rare Metal Materials and Engineering, 2015, 44(4):859-865.(in Chinese)
    [19] 张国英,张辉,方戈亮,等.Al-Zn-Mg-Cu系铝合金中不同区域电子结构及应力腐蚀机理分析[J]. 金属学报,2009,45(6):687-691.ZHANG Guoying, ZHANG Hui, FANG Geliang, et al. Electronic structure of different regions and analysis of stress corrosion mechanism of Al-Zn-Mg-Cu alloys[J]. Acta Metallurgica Sinica, 2009, 45(6):687-691. (in Chinese)
    [20] 阎守胜.固体物理基础[M].3版.北京:北京大学出版社,2011.YAN Shousheng. Fundamentals of solid state physics[M]. 3rd Ed. Beijing:Peking University Press, 2011. (in Chinese)
    [21] 廖沐真.量子化学从头计算方法[M].北京:清华大学出版社,1984.LIAO Muzhen. An initial method for quantum chemistry[M]. Beijing:Tsinghua University Press, 1984. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王锦涛,韩校宇,刘守平,侯微. Si、V对Fe-Al-Cr合金抗高温氧化性的影响[J].重庆大学学报,2019,42(2):81-92.

复制
分享
文章指标
  • 点击次数:801
  • 下载次数: 1104
  • HTML阅读次数: 562
  • 引用次数: 0
历史
  • 收稿日期:2018-11-20
  • 在线发布日期: 2019-03-08
文章二维码