露天矿卡车外排土场内部运距预测模型
作者:
基金项目:

国家自然科学基金资助项目(51304104);辽宁省教育厅基金资助项目(LJYL038,LJ2017FAL015);辽宁省煤炭资源安全开采与洁净利用工程研究中心开放基金资助项目(TU15KF07)。


A prediction model of the truck dumping haul distance in open-pit mine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为有效提高外排土场物料移运规划中运输功能耗模型的精度,以建立更为详细的排弃物料堆置次序优化、规划模型,针对年末排土计划中尚缺乏逐条带运距推估方法的问题展开研究,提出一种采用极限学习机算法(ELM)训练多元非线性运距曲线的预测模型,并将年末排土工程计划位置上已设计运输线路的排土条带作为训练样本,训练预测模型学习运距与影响因子间的时变特征,最终通过非线性运距表达推估待排物料块体的时变运距。为进一步增强ELM算法的预测精度,利用改进粒子群算法建立基于结构风险最小化的参数优化算法,改善了传统经验风险最小化算法的泛化能力,提高了算法预测精度。研究结果表明:采用模拟试算图解法最终确定ELM模型隐含层节点数为27;仿真测试中得出文中算法预测精度评价指标分别为均方误差0.006 8、拟合优度0.995 3、相对误差期望0.027%、绝对误差期望0.62、错估系数0.03、执行效率1.49 s;对比多组智能算法预测模型,其绝对误差分别0.116 2、0.094 7、0.139 1,其错估系数分别为0.230、0.200、0.266,算法明显具有更好的预测效果。

    Abstract:

    In order to effectively improve the accuracyof transportationfunction consumption models, open-pit designer can establish a more detailed material transportation planning model for theproblems that cannot be solved for lack ofestimation method of strip-by-strip transport distance in the annual plan. In this paper a prediction model of multivariate nonlinear haul distance curve trained by extreme learning machine was proposed. The dump strip on transport line designed for year-end dump project location was taken as the training samplesto train prediction model to learn the time varying trait of hual distance and influence factor. Finally, the nonlinear estimation of haul distance expression was used to predict block variable distance. In order to enhance the prediction accuracy of the ELM algorithm,the modified particle swarm optimization algorithm was adopted to build the model of parameters optimization aimed at structural risk minimization and realized the structural risk correction to improve the accuracy of prediction algorithm. The results show that the method of ELM model ultimately determine the number of hidden layer nodes to be 27 through the test of simulation by trial and graphic test.The evaluation indexesof algorithm prediction accuracy (mean square error, goodness of fit, relative error expectation, absolute error expectation, misestimation coefficient, execution efficiency) are 0.006 8, 0.995 3, 0.027%, 0.62,0.03 and 1.49 srespectively.Compared with other prediction model of intelligent algorithm,their absolute error are 0.116 2, 0.094 7, 0.139 1 and the coefficient of miscalculation are 0.230, 0.200, 0.266. In conclusion, the algorithm has better prediction effect obviously.

    参考文献
    [1] 于汝绶,张瑞新,王宝庭,等.露天采矿优化理论与实践[M].北京:煤炭工业出版社,2005:224-238.YU Rushou, ZHANG Ruixin, WANG Baoting, et al. Optimization theory and practice of open pit mining[M]. Beijing:China Coal Industry Publishing House, 2005:224-238. (in Chinese)
    [2] 张幼蒂,李克民,张瑞新,等.露天开采优化设计理论与应用[M].徐州:中国矿业大学出版社,2000:309-315.ZHANG Youdi, LI Kemin, ZHANG Ruixin, et al. Theory and application of optimum design for open pit mining[M]. Xuzhou:China University of Mining and Technology, 2000:309-315. (in Chinese)
    [3] 魏强,李克民,姚绍武.露天矿物料流规划系统的设计与实现[J].中国矿业大学学报,2003,32(2):180-182.WEI Qiang, LIKemin, YAO Shaowu. Design and realization of surface mining material-stream programming system[J]. Journal of China University of Mining & Technology, 2003, 32(2):180-182. (in Chinese)
    [4] 卢雯雯,叶义成,刘明,等.露天矿排岩优化的物流调度规划方法探讨[J].资源环境与工程,2007,21(4):466-470.LU Wenwen, YE Yicheng, LIU Ming, et al. A research of dumping optimization in strip mine based on logistics programming[J]. Resources Environment & Engineering, 2007, 21(4):466-470. (in Chinese)
    [5] 刘佶林,戴晓江,王孝东. 露天矿排土运输优化的最优排土堆置体搜索算法研究[J]. 矿业研究与开发,2016, 36(12):13-18.LIU Jilin, DAI Xiaojiang, WANG Xiaodong. The optimized dumping region searching algorithm of dumping transportation for open-pit mine[J]. Mining Research and Development, 2016, 36(12):13-18. (in Chinese)
    [6] 刘佶林.基于数字矿床模型的露天排运规划优化研究[D].昆明:昆明理工大学,2015.LIU Jilin.Optimization research of outdoor row transportation planning based on digital deposit model[D]. Kunming:Kunming University of Science and Technology, 2015.
    [7] Li Y, Topala E, Williams D. Waste rock dumping optimisation using mixed integer programming (MIP)[J]. International Journal of Mining, Reclamation and Environment, 2013, 27(6):425-436.
    [8] Li Y, Topal E, Williams D J. Optimisation of waste rock placement using mixed integer programming[J]. Mining Technology, 2014, 123(4):220-229.
    [9] Li Y, Topal E, Ramazan S. Optimising the long-term mine waste management and truck schedule in a large-scale open pit mine[J]. Mining Technology, 2016, 125(1):35-46.
    [10] Li Y. Optimum waste dump planning using mixed integer programming (MIP)[D]. Perth:Curtin University, 2014.
    [11] 刘光,张瑞新.露天矿排土及土岩流向流量优化模型[J].化工矿山技术,1991(3):6-8.LIU Guang, ZHANG Ruixin. Discharge optimization model of discharge and soil rock flow in open pit mine[J]. Chemical Mining Technology, 1991(3):6-8. (in Chinese)
    [12] 刘光.露天矿排土场排土程序的综合优化及S=F(V)曲线的绘制[J].露天采矿,1989(4):35-39.LIU Guang. Comprehensive optimization of dump program and drawing of S=F (V) curve for open pit mine dump[J]. Opencast Mining, 1989(4):35-39. (in Chinese)
    [13] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:Theory and application[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
    [14] Huang G B, Zhu Q Y, Siew C K. Real-time learning capability of neural networks[J]. IEEE Transactions on Neural Networks, 2006, 17(4):863-878.
    [15] Lan Y, Soh Y C, Huang G B. Ensemble of online sequential extreme learning machine[J]. Neurocomputing, 2009, 72(13/14/15):3391-3395.
    [16] Huang G B, Ding X J, Zhou H M. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1/2/3):155-163.
    [17] 毛力,王运涛,刘兴阳,等.基于改进极限学习机的短期电力负荷预测方法[J].电力系统保护与控制,2012,40(20):140-144.MAO Li, WANG Yuntao, LIU Xingyang, et al. Short-tern power load forecasting method based on improved extreme learning machine[J]. Power System Protection and Control, 2012, 40(20):140-144. (in Chinese)
    [18] Kennedy J, EberhartR, Shi Y H. Swarmintelligence[M]. San Francisco, Cal, USA:Morgan Kaufmann Publishers, 2001:287-318.
    [19] Cao Z Y, Xia J C, Zhang M, et al. Optimization of gear blank preforms based on a new R-GPLVM model utilizing GA-ELM[J].Knowledge-Based Systems, 2015, 83:66-80.
    [20] Xu Y, Shu Y. Evolutionary extreme learning machine:Based on particle swarm optimization[J]. Advances in Neural Networks, 2006, 3971:644-652.
    [21] Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5):988-999.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

白润才,柴森霖,刘光伟,付恩三,赵景昌,曹博.露天矿卡车外排土场内部运距预测模型[J].重庆大学学报,2019,42(2):112-122.

复制
分享
文章指标
  • 点击次数:798
  • 下载次数: 971
  • HTML阅读次数: 434
  • 引用次数: 0
历史
  • 收稿日期:2018-07-03
  • 在线发布日期: 2019-03-08
文章二维码