基于邻域维护准则的特征选择算法优化研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311

基金项目:

国家自然科学基金资助项目(61262040)。


Research on optimization of feature selection algorithm based on neighborhood preservation criterion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应用特征选择处理多标签数据分类时"维度灾难"问题已成为重要研究方向,因此提出一种基于邻域维护准则的特征选择算法(NPFS,feature selection algorithm based on neighborhood preservation criterion)。通过近似基于特征子空间和基于标签空间的2个相似度矩阵来构建相似性维护表达式,再通过线性近似扩展相似性维护公式得到邻域关系维护公式,并计算出邻域关系维护得分(NRPS,neighborhood relationship preserving score)来评估特征子集的重要性,结合贪婪方法设计具有NRPS的多标签特征选择算法(NPFS)。仿真结果表明,对比MMIFS算法和MDMR算法,所提出的算法在平均准确率、覆盖率、汉明损失、1-错误率、排名损失5个性能指标上均有改善。

    Abstract:

    The application of feature selection to deal with "Dimensional Disaster" in multi-label data classification has become an important research direction, we proposed a feature selection algorithm based on neighborhood preservation criterion (NPFS). A similarity preservation expression was constructed by approximating two similarity matrices based on feature subspace and label space. Then, the similarity preservation formulation was extended by the linear approximation to obtain a formulation of the neighborhood relationship preservation, and the importance of the feature subset was evaluated by calculating the neighborhood relationship preserving score (NRPS).A multi-label feature selection algorithm with NRPS was designed in combination with the greedy method(NPFS).The simulation results show that the metrics of average precision, coverage, hamming loss, one-error, ranking loss obtained by the proposed algorithm have been improved compared with those obtained by MMIFS algorithm and MDMR algorithm.

    参考文献
    相似文献
    引证文献
引用本文

刘云,肖雪.基于邻域维护准则的特征选择算法优化研究[J].重庆大学学报,2019,42(3):58-64.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-09
  • 出版日期:
文章二维码