基于邻域维护准则的特征选择算法优化研究
作者:
中图分类号:

TP311

基金项目:

国家自然科学基金资助项目(61262040)。


Research on optimization of feature selection algorithm based on neighborhood preservation criterion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    应用特征选择处理多标签数据分类时"维度灾难"问题已成为重要研究方向,因此提出一种基于邻域维护准则的特征选择算法(NPFS,feature selection algorithm based on neighborhood preservation criterion)。通过近似基于特征子空间和基于标签空间的2个相似度矩阵来构建相似性维护表达式,再通过线性近似扩展相似性维护公式得到邻域关系维护公式,并计算出邻域关系维护得分(NRPS,neighborhood relationship preserving score)来评估特征子集的重要性,结合贪婪方法设计具有NRPS的多标签特征选择算法(NPFS)。仿真结果表明,对比MMIFS算法和MDMR算法,所提出的算法在平均准确率、覆盖率、汉明损失、1-错误率、排名损失5个性能指标上均有改善。

    Abstract:

    The application of feature selection to deal with "Dimensional Disaster" in multi-label data classification has become an important research direction, we proposed a feature selection algorithm based on neighborhood preservation criterion (NPFS). A similarity preservation expression was constructed by approximating two similarity matrices based on feature subspace and label space. Then, the similarity preservation formulation was extended by the linear approximation to obtain a formulation of the neighborhood relationship preservation, and the importance of the feature subset was evaluated by calculating the neighborhood relationship preserving score (NRPS).A multi-label feature selection algorithm with NRPS was designed in combination with the greedy method(NPFS).The simulation results show that the metrics of average precision, coverage, hamming loss, one-error, ranking loss obtained by the proposed algorithm have been improved compared with those obtained by MMIFS algorithm and MDMR algorithm.

    参考文献
    [1] Zhang M L, Wu L. Lift:multi-label learning with label-specific features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1):107-120.
    [2] Zhang M L, Zhou Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837.
    [3] Huang J, Li G R, Huang Q M, et al. Learning label-specific features and class-dependent labels for multi-label classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12):3309-3323.
    [4] Glinka K, Woźniak R, Zakrzewska D. Improving multi-label medical text classification by feature selection[C]//2017 IEEE 26th International Conference on Enabling Technologies:Infrastructure for Collaborative Enterprises (WETICE), Poznan, 2017:176-181.
    [5] He Z F, Yang M, Liu H D. Multi-task joint feature selection for multi-label classification[J]. Chinese Journal of Electronics, 2015, 24(2):281-287.
    [6] Xu C, Liu T L, Tao D C, et al. Local rademacher complexity for multi-label learning[J]. IEEE Transactions on Image Processing, 2016, 25(3):1495-1507.
    [7] Lee J, Kim D W. Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34(3):349-357.
    [8] Lin Y J, Hu Q H, Liu J H, et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neuro computing, 2015, 168:92-103.
    [9] Pathania A, Venkatramani V, Shafique M, et al. Optimal greedy algorithm for many-core scheduling[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36(6):1054-1058.
    [10] Zhao Z, Wang L, Liu H, et al. On similarity preserving feature selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(3):619-632.
    [11] Mutuk H. A physical proof for cauchy's inequality[J]. The American Mathematical Monthly, 2016, 123(8):843.
    [12] 李峰, 苗夺谦, 张志飞, 等. 基于互信息的粒化特征加权多标签学习k近邻算法[J].计算机研究与发展, 2017, 54(5):1024-1035.LI Feng, MIAO Duoqian, ZHANG Zhifei, et al. Mutual information based granular feature weighted k-nearest neighbors algorithm for multi-label learning[J]. Journal of Computer Research and Development, 2017, 54(5):1024-1035.(in Chinese)
    [13] Xu H T, Xu L Y. Multi-label feature selection algorithm based on label pairwise ranking comparison transformation[C]//2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, 2017:1210-1217.
    [14] Zhang M L, Zhou Z H. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘云,肖雪.基于邻域维护准则的特征选择算法优化研究[J].重庆大学学报,2019,42(3):58-64.

复制
分享
文章指标
  • 点击次数:657
  • 下载次数: 870
  • HTML阅读次数: 709
  • 引用次数: 0
历史
  • 收稿日期:2018-10-11
  • 在线发布日期: 2019-04-09
文章二维码