融合MT2503与MEMS传感器的惯性导航定位算法
作者:
中图分类号:

P311.35

基金项目:

国家重点研发计划项目(2017YFB1300704)。


Fusion Inertial Navigation Location Algorithm for MT2503 Chip and MEMS Sensors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为提高惯性导航室内定位算法的精度与连续性,提出一种融合MT2503与MEMS传感器的惯性导航定位算法,算法以MT2503芯片作为定位终端,并将加速度计传感器、陀螺仪,磁力计等传感器与其进行融合,通过加速度计传感器解算步长、步幅、步频,通过陀螺仪与磁力计来识别定位终端微动偏移量,最后在初始位置上累加定位终端位移得出定位终端实时位置。实验证实通过零速修正和卡尔曼滤波对误差进行校正,有效的解决了MEMS(micro-electro mechanical system)定位算法中存在的导航解算误差累积问题,提升了MEMS惯性导航室内定位算法的精度。

    Abstract:

    A fusion inertial navigation location algorithm for MT2503 and MEMS sensors is presented to improve accuracy and continuity. MT2503 chip is the locating terminal of location algorithm which blends accelerometer sensors, gyroscopes, magnetometers, and other sensors. Accelerometer sensors are used to resolve step size, stride and stride frequency. Gyroscopes and magnetometers are used to recognize the offset of a locating terminal. Finally, an offset of the location terminal is added on the original location to obtain the real time location of the locating terminal. Experiments confirmed that the problem of accumulative errors in navigation solution of the MEMS location algorithm is solved well through zero velocity update and Kalman filter. The method improves the accuracy of indoor inertial navigation positioning algorithm based on MEMS sensors.

    参考文献
    [1] Mo Y, Zhang Z, Lu Y, et al. A novel technique for human traffic based radio map updating in Wi-Fi indoor positioning systems[J]. Ksii Transactions on Internet & Information Systems, 2015, 9(5):1881-1903.
    [2] Choi B S, Lee J W, Lee J J, et al. A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion[J]. IEEE Transactions on Industrial Electronics, 2011, 58(6):2226-2235.
    [3] Cooper M, Biehl J, Filby G, et al. LoCo:boosting for indoor location classification combining Wi-Fi and BLE[J]. Personal & Ubiquitous Computing, 2016, 20(1):83-96.
    [4] 宋倩雯, 郭松涛, 柏艾林, 等. 无线传感器网络中一种改进的DV-Hop定位算法[J]. 重庆大学学报, 2015, 38(4):128-136.SONG Qianwen, GUO Songtao, BAI Ailin, et al. An improved localization algorithm based on DV-Hop in wireless sensor networks[J]. Journal of Chongqing University, 2015, 38(4):128-136.(in Chinese)
    [5] 武时龙, 张万礼, 杨小莹. RSSI修正的WSN定位算法[J]. 重庆大学学报, 2014, 37(8):144-150.WU Shilong, ZHANG Wanli, YANG Xiaoying. WSN localization algorithm based on RSSI correction[J]. Journal of Chongqing University, 2014, 37(8):144-150.(in Chinese)
    [6] 李旭, 贾宇波, 张倩. 基于智能手机MEMS的室内定位系统[J]. 工业控制计算机, 2013, 26(6):20-22.LI Xun, JIA Yubo, ZHANG Qian. Buiding localization system based on mobile phone MEMS.[J]. Industrial Control Computer, 2013, 26(6):20-22.(in Chinese)
    [7] 朱彩杰, 赵冬青, 杨洲. 基于MEMS的室内定位误差修正方法研究[J]. 测绘工程, 2017, 26(5):57-61.ZHU Caijie, ZHAO Dongqing, YANG Zhou. A study of indoor positioning error correction method based on MEMS[J]. Engineering of Surveying and Mapping, 2017, 26(5):57-61.(in Chinese)
    [8] 李丽锦, 周志广, 段勇. 捷联式磁航向测量系统的航向角误差动态特性研究[J]. 传感器与微系统, 2017, 36(5):52-54.LI Lijin, ZHOU Zhiguang, DUAN Yong. Research on dynamic error characteristics of strapdown magnetic heading measurement system[J]. Transducer and Microsystem Technologies, 2017, 36(5):52-54.(in Chinese)
    [9] 徐庆九, 孙时珍, 马捷,等. 基于最大似然估计法的加速度计误差参数标定方法[J]. 海军航空工程学院学报, 2013(6):599-603.XU Qingjiu, SUN Shizhen, MA Jie, et al. Calibration method of accelerometer error parameters based on the maximum likelihood estimation method[J]. Journal of Naval Aeronautical and Astronautical, 2013(6):599-603.(in Chinese)
    [10] 陈磊琛. 支持向量机与卡尔曼滤波算法在组合导航中的应用研究[D]. 武汉:中国地质大学计算机学院, 2010.CHEN Leichen. Research on support vector machine and its application in integrated navigation with kalman fiter[D]. Wuhan:China University of Geosciences School of Computing, 2010.(in Chinese)
    [11] 罗毅. 数字相关滤波法振动信号的处理技术研究[J]. 中国高新技术企业, 2017, (5):18-19.LUO Yi. Research on the processing technology of vibration signal by digital correlation filtering[J]. China High-tech Enterprises, 2017, (5):18-19.(in Chinese)
    [12] Hu G H. Automated defect detection in textured surfaces using optimal elliptical Gabor filters[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(14):1331-1340.
    [13] Pieper A, Kreutzer M, Alvermann A, et al. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations[J]. Journal of Computational Physics, 2016, 325:226-243.
    [14] Dogra A, Bhalla P. Image sharpening by gaussian and butterworth high pass filter[J]. Biomedical & Pharmacology Journal, 2015, 7(2):707-713.
    [15] Doppler J, Holl G, Ferscha A, et al. Variability in foot-worn sensor placement for activity recognition[J]. 2009:143-144.
    [16] 杨丽, 胡方强. 自适应GPS扩展卡尔曼定位算法研究[J]. 电子技术应用, 2016, 42(8):91-93.YANG Li, HU Fangqiang. Study on extended kalman localization algorithm for adaptive GPS[J]. Measurement Control Technology and Instruments, 2016, 42(8):91-93.(in Chinese)
    [17] 张怡, 席彦彪, 李刚伟, 等. 基于卡尔曼滤波的TDOA/AOA混合定位算法[J]. 计算机工程与应用, 2015, 51(20):62-66.ZHANG Yi, XI Yanbiao, LI Gangwei, et al. TDOA/AOA hybrid positioning algorithm based on Kalman filter in NLOS environment[J]. Computer Engineering and Applications, 2015, 51(20):62-66.(in Chinese)
    [18] 谢翔, 郭际明, 曹文涛,等. 基于卡尔曼滤波算法卫星数不足情况下的连续定位[J]. 地理空间信息, 2013, 11(1):11-12.XIE Xiang, GUO Jiming, CAO Wentao, et al. Research on continuous positioning with insufficient visible satellites based on kalman filter algorithm[J]. Geospatial Information, 2013, 11(1):11-12.(in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王超.融合MT2503与MEMS传感器的惯性导航定位算法[J].重庆大学学报,2019,42(3):76-84.

复制
分享
文章指标
  • 点击次数:802
  • 下载次数: 1023
  • HTML阅读次数: 946
  • 引用次数: 0
历史
  • 收稿日期:2018-04-10
  • 在线发布日期: 2019-04-09
文章二维码