基于改进的局部方向模式人脸表情识别算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P642.22

基金项目:


Facial expression recognition algorithm based on improved local direction pattern
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对LDP利用Kirsch算子计算8方向的边缘响应值并排序,特征提取速度慢的问题,提出了一种改进的分解局部方向模式DLDP(divided local directional pattern)特征提取方法。将Kirsch算子的8个方向掩模分成2个子方向掩模再分别计算边缘响应值,获得2个编码(DLDP1和DLDP2),级联两个编码的直方图得到表情特征DLDP。然后利用主成分分析法(PCA,principal component analysis)降维处理。最后用支持向量机进行表情识别,在JAFFE数据库上的实验表明,本文方法与近几年效果较好的特征提取算法相比,不仅缩短了特征提取的运算时间,而且提高了识别率。

    Abstract:

    The local directional pattern (LDP) descriptor is a method for texture feature extraction. It calculates and sorts edge response values of eight different directions, thus the speed is slower than other local texture feature extraction algorithm. This paper presents a new feature descriptor called divided local directional pattern (DLDP) for feature extraction. In this method, Kirsch masks in eight different orientations were divided into two sub-directional masks. The edge response values were calculated respectively to obtain DLDP1 and DLDP2. DLDP1 and DLDP2 were concatenated into a single DLDP descriptor. Then principal component analysis (PCA) was used for dimensionality reduction processing. Finally, the support vector machine (SVM) was applied to classify and recognize facial expression. The experimental results show that compared with the better feature extraction algorithms in recent years, the improved local direction pattern can not only reduce the computation time, but also improve the rate of facial expression recognition.

    参考文献
    相似文献
    引证文献
引用本文

罗元,余朝靖,张毅,刘浪.基于改进的局部方向模式人脸表情识别算法[J].重庆大学学报,2019,42(3):85-91.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-07-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-04-09
  • 出版日期:
文章二维码