真空碳热还原直接制备铁/碳化钛复合粉体和陶瓷
作者:
中图分类号:

TF450

基金项目:

中国科协青年人才托举工程项目(2015QNRC001)。


Direct preparation of Fe-TiC composite powders and its ceramics by vacuum carbothermal reduction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统生产碳化钛系钢结硬质合金的方法是将金属钢粉和TiC粉机械混合后压块烧结成型。该方法原料成本高,且TiC粉表面极易氧化,使得后续的粉末冶金过程中TiC表面与Fe的接触变差,不能紧密黏结在一起,严重影响最终产物的材料性能和纯度。实验采用TiO2粉、石墨粉和还原铁粉作为原料,通过真空碳热还原直接制备出Fe-TiC复合粉体,作为生产TiC系钢结硬质合金的原料。该方法成功避免了TiC粉表面氧化的问题,且原料成本低,产品纯度高,制得的陶瓷性能优良。研究发现,随着原料中碳配比的增加,最终得到的陶瓷产物硬度逐渐降低,而其弯曲强度先升高后降低。同时发现使用Ti粉作为烧结添加剂有助于增强产品的硬度及弯曲强度。最终产品的硬度为1 191.7 HV(11.7 GPa),弯曲强度为1 776 MPa;其制备工艺为:原料配比TiO2:C:Fe=20:8.6:15,温度1 400℃,烧结时长6 h,并加入质量分数为1%的Ti粉作为添加剂。

    Abstract:

    In traditional route to produce TiC-type steel-bonded carbides, steel powder and TiC powder are mixed mechanically and sintered after pressing. The cost of the raw materials in this method is high, and the surface of TiC powder is easily oxidized which makes the wettability between TiC and Fe terrible in following powder metallurgy process. The terrible wettability makes it difficult for Fe to combine tightly with TiC, seriously affecting the properties and purity of the product. The present experiment uses titanium dioxide powder, graphite powder and reduced iron powder to produce Fe-TiC composite powder by vacuum carbothermal reduction firstly, and then the composite powder is used to produce TiC-type steel-bonded carbides. This route successfully avoids the surface oxidation of TiC powder and has the advantages of low cost of materials, high purity of the products and excellent properties of the prepared ceramics. The results indicate that, with the increase of carbon ratio in the raw materials, the hardness of the product decreases while the bending strength increases firstly and then decreases. Besides, the addition of Ti powder enhances the hardness and bending strength of products. The optimal product with a hardness of 11.7 GPa and a bending strength of 1 776 MPa is obtained when the raw material ratio TiO2:C:Fe is 20:8.6:15, temperature is 1 400℃ and holding time is 6 h with Ti powder of a mass fraction of 1% as the additive.

    参考文献
    [1] Oh N R, Lee S K, Hwang K C, et al. Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC-steel composite[J]. Scripta Materialia, 2016, 112:123-127.
    [2] 谢真, 周大利, 杨为中, 等. 真空原位碳热还原法制备纳米碳化钛粉体[J]. 钢铁钒钛,2017,38(1):38-42.XIE Zhen, ZHOU Dali, YANG Weizhong, et al. Preparation of nano-TiC powders by in-situ carbothermal method in vacuum[J].Iron Steel Vanadium Titanium,2017,38(1):38-42. (in Chinese)
    [3] 吕亚男, 章顺虎, 陈栋. 冷却过程中碳化钛纳米颗粒结构的分子动力学研究[J]. 钢铁钒钛, 2018, 39(5):162-166.LÜ Yanan, ZHANG Shunhu, CHEN Dong. Molecular dynamics study of the structure of titanium carbide nanoparticles during cooling process[J]. Iron Steel Vanadium Titanium, 2018, 39(5):162-166.(in Chinese)
    [4] Kiviö M, Holappa L, Louhenkilpi S, et al. Studies on interfacial phenomena in titanium carbide/liquid steel systems for development of functionally graded material[J]. Metallurgical and Materials Transactions B, 2016, 47(4):2114-2122.
    [5] Pazhanivel B, Kumar T P, Sozhan G. Machinability and scratch wear resistance of carbon-coated WC inserts[J]. Materials Science and Engineering:B, 2015, 193:146-152.
    [6] 范敏, 余新泉. Fe3Al/TiC复合材料的耐高温冲蚀性能[J]. 东南大学学报(自然科学版), 1999, 29(6):136-139.FAN Min, YU Xinquan. Erosion resistance of Fe3Al/TiC composite at high temperatures[J]. Journal of Southeast University(Natural Science Edition), 1999, 29(6):136-139.(in Chinese)
    [7] 李奎, 潘复生, 汤爱涛. TiC、TiN、Ti(C、N)粉末制备技术的现状及发展[J]. 重庆大学学报(自然科学版), 2002, 25(6):135-138,151.LI Kui, PAN Fusheng, TANG Aitao. Present status and development of synthesis technologies for TiC, TiN, Ti(C, N) powders[J]. Journal of Chongqing University(Natural Sciecne Edition), 2002, 25(6):135-138,151.(in Chinese)
    [8] Xie Z, Deng Y, Yang Y Y, et al. Preparation of nano-sized titanium carbide particles via a vacuum carbothermal reduction approach coupled with purification under hydrogen/argon mixed gas[J]. RSC Advances, 2017, 7(15):9037-9044.
    [9] Hong S M, Park J J, Park E K, et al. Fabrication of titanium carbide nano-powders by a very high speed planetary ball milling with a help of process control agents[J]. Powder Technology, 2015, 274:393-401.
    [10] Hasniyati M R, Zuhailawati H, Ramakrishnan S, et al. Mechanism and optimization of titanium carbide-reinforced iron composite formation through carbothermal reduction of hematite and anatase[J]. Journal of Alloys and Compounds, 2014, 587:442-450.
    [11] AlMangour B, Grzesiak D, Yang J M. In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting[J]. Journal of Alloys and Compounds, 2017, 706:409-418.
    [12] Sun L, Song Q S, Xu Q, et al. The electrochemical synthesis of TiC reinforced Fe based composite powder from titanium-rich slag[J]. New Journal of Chemistry, 2015, 39(6):4391-4397.
    [13] Wang Z, Lin T, He X B, et al. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes[J]. Journal of Alloys and Compounds, 2015, 650:918-924.
    [14] Wang J J, Hao J J, Guo Z M, et al. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(12):1328-1333.
    [15] Rahimipour M R, Sobhani M. Evaluation of centrifugal casting process parameters for in situ fabricated functionally gradient Fe-TiC composite[J]. Metallurgical and Materials Transactions B, 2013, 44(5):1120-1123.
    [16] Wang Z, Lin T, He X B, et al. Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J]. International Journal of Refractory Metals and Hard Materials, 2016, 58:14-21.
    [17] 胡蒙均, 尹方庆, 魏瑞瑞, 等. 真空碳热还原-酸浸含钛高炉渣制备TiC分析[J]. 重庆大学学报, 2015, 38(6):99-106.HU Mengjun, YIN Fangqing, WEI Ruirui, et al. Preparation of TiC by carbothermal reduction in vacuum and acid leaching process using titanium bearing blast furnace slag[J]. Journal of Chongqing University, 2015, 38(6):99-106.(in Chinese)
    [18] 李重河, 周汉, 陈光耀, 等. TiFe基储氢合金的BaZrO3坩埚熔炼制备及其储氢性能[J]. 东华理工大学学报(自然科学版), 2016, 39(2):107-113.LI Chonghe, ZHOU han, CHEN Guangyao, et al. Preparation of TiFe based alloys melted by BaZrO3 crucible and its hydrogen storage properties[J]. Journal of East China University of Technology(Natural Science), 2016, 39(2):107-113.(in Chinese)
    [19] Wu M Z, Lü H H, Liu M C, et al. Direct extraction of perovskite CaTiO3 via efficient dissociation of silicates from synthetic Ti-bearing blast furnace slag[J]. Hydrometallurgy, 2017, 167:8-15.
    [20] Vallauri D, Atías Adrián I C, Chrysanthou A. TiC-TiB2 composites:a review of phase relationships, processing and properties[J]. Journal of the European Ceramic Society, 2008, 28(8):1697-1713.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴柯汉,张国华,周国治.真空碳热还原直接制备铁/碳化钛复合粉体和陶瓷[J].重庆大学学报,2019,42(4):49-55.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-14
  • 在线发布日期: 2019-04-23
文章二维码