管式换热器在混合气体余热回收中的传热优化
作者:
中图分类号:

TK172

基金项目:

科技部国家级重点(十三五)科研基金项目(2016YFC0700705)。


The heat transfer optimization analysis of tube heat exchanger in waste heat recovery of mixed gas
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究高温混合气体在管式换热器中的传热特性,基于k-ε湍流模型、传热理论和Maxwell-Stefan扩散理论建立三维稳态数值模型,分析物质扩散条件对换热器温度场分布的影响。对换热器进行参数化分析,如冷热流体入口温度、速度,并从(火用)的角度探究换热器的热传递效率。研究发现,物质扩散改变了混合气体中各组分的分布,使在传热中占主导地位的氢气发生回流扩散,反复换热,消耗高温流体热量,降低了换热器的传热性能,与未考虑物质扩散因素相比,等效传热系数从16.564 W/(m2·K)降为15.955 W/(m2·K),且在一定的工况参数范围内,换热器的(火用)效率在10%~30%之间,冷却效果明显。

    Abstract:

    In order to study the heat exchange characteristics of high temperature mixed gas in tube heat exchanger, a three-dimensional steady state numerical model based on the k-ε turbulence model, heat transfer theory and Maxwell-Stefan diffusion theory was established to investigate the influence of material diffusion on the temperature field distribution of heat exchanger. The heat exchanger was then parametrically analyzed involving the inlet temperature and velocity of cold and heat fluid and its heat transfer efficiency was examined from the view of exergy. The results show that the substance diffusion changes the distribution of the components in the heat flow mixed gas and the hydrogen which is dominant in the heat transfer diffuses reversely, exchanges heat repeatedly, thus consuming the heat of high temperature fluid, leading to a reduced level of the heat transfer performance of heat exchanger. The equivalent heat transfer coefficient reduces from 16.564 W/(m2·K) to 15.955 W/(m2·K). Within a certain range of operating parameters, the exergy efficiency of heat exchanger is between 10% and 30%, and the cooling effect is obvious.

    参考文献
    [1] Lee H S. Thermal design:Heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells[M]. Wiley, 2010.
    [2] 高绪栋,程林,许明田,等.管壳式换热器壳侧流体的流动及其熵产分布[C]//中国工程热物理学会2008年传热传质学学术会议.郑州:中国工程热物理学会,2008.GAO Xudong, CHENG Lin, XU Mingtian, et al. The flow of fluid and its entropy distribution on the side of shell of tubular heat exchanger[C]//2008 Heat and Mass Transfer Academic Conference of the China Institute of Engineering Thermal Physics. Zhengzhou:China Society of Engineering Thermophysics, 2008. (in Chinese)
    [3] 司子辉,张燕,康一亭,等.翅片管式换热器的数值模拟与优化[J].化工进展,2010,29(S2):82-86.SI Zihui, ZHANG Yan, KANG Yiting, et al. Numerical simulation and optimization of finned tube heat exchanger[J]. Chemical Industry and Engineering Progress, 2010, 29(S2):82-86. (in Chinese)
    [4] 俞接成,诸葛一然.管壳式换热器流动与传热的三维数值模拟[J].北京石油化工学院学报,2012,20(2):60-64.YU Jiecheng, ZHUGE Yiran. A three-dimension numerical study on the heat transfer and fluid flow of a shell-and-tube heat exchanger[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2012, 20(2):60-64. (in Chinese)
    [5] 彭必先,甘昌胜,闫天堂.甲醇水蒸汽催化重整过程的研究进展[J].化学进展,2004,16(3):414-421.PENG Bixian, GAN Changsheng, YAN Tiantang. Advances in methanol-steam catalytic reforming process[J]. Progress in Chemistry, 2004, 16(3):414-421. (in Chinese)
    [6] Liu Q B, Hong H, Yuan J L, et al. Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy[J]. Applied Energy, 2009, 86(2):155-162.
    [7] Duncan J B, Toor H L. An experimental study of three component gas diffusion[J]. AIChE Journal, 1962, 8(1):38-41.
    [8] Krishna R, Wesselingh J A. The Maxwell-Stefan approach to mass transfer[J]. Chemical Engineering Science, 1997, 52(6):861-911.
    [9] Bassi F, Crivellini A, Rebay S, et al. Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations[J]. Computers & Fluids, 2005, 34(4/5):507-540.
    [10] Fuller E N, Schettler P D, Giddings J C. New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial & Engineering Chemistry, 1966, 58(5):18-27.
    [11] Krishna R. A generalized film model for mass transfer in non-ideal fluid mixtures[J]. Chemical Engineering Science, 1977, 32(6):659-667.
    [12] 王维德.多组分物系传质过程扩散系数及其计算[J].华侨大学学报(自然科学版),2002,23(2):180-183.WANG Weide. Diffusivity of multicomponent mixture during the process of mass transfer and its calculation[J]. Journal of Huaqiao University(Natural Science), 2002, 23(2):180-183. (in Chinese)
    [13] Krishna R. Effect of nature and composition of inert gas on binary vapour condensation[J]. Letters in Heat and Mass Transfer, 1979, 6(2):137-147.
    [14] 王冶.船用换热器流动与传热的三维流场数值模拟研究[D].上海:上海交通大学,2013.WANG Ye. Numerical simulation for 3D flow field on flow and heat transfer performance of the marine heat exchangers[D]. Shanghai:Shanghai Jiaotong University, 2013. (in Chinese)
    [15] 谷伟,张虎,李增耀,等.混合气体在典型多孔介质内扩散过程的数值模拟[J].西安交通大学学报,2012,46(3):107-112.GU Wei, ZHANG Hu, LI Zengyao, et al. Simulation on diffusion processes of multicomponent gas mixture in typical porous media[J]. Journal of Xi'an Jiaotong University, 2012, 46(3):107-112. (in Chinese)
    [16] 高鑫,刘超杰.换热器在核电站的应用及其性能分析[J].河南科技,2015(22):69-70.GAO Xin, LIU Chaojie. Application and performance analysis of heat exchanger in nuclear power plant[J]. Journal of Henan Science and Technology, 2015(22):69-70. (in Chinese)
    [17] 罗庚.基于(火用)分析法的换热器性能研究[J].企业导报,2016(10):113.LUO Geng. Based on exergy analysis method of the heat exchanger performance study[J]. Guide to Business, 2016(10):113. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

串禾,段洋.管式换热器在混合气体余热回收中的传热优化[J].重庆大学学报,2019,42(4):82-91.

复制
分享
文章指标
  • 点击次数:761
  • 下载次数: 1305
  • HTML阅读次数: 959
  • 引用次数: 0
历史
  • 收稿日期:2018-11-01
  • 在线发布日期: 2019-04-23
文章二维码