CO和Cl2在TiO2(110)表面的吸附行为
作者:
中图分类号:

O647.3

基金项目:

国家自然科学基金资助项目(51674052,91634106);重庆市基础研究与前沿技术研究计划项目(cstc2018jcyjAX0003)。


Adsorption of both CO and Cl2 on TiO2(110) surface
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用基于密度泛函理论(DFT)的第一性原理方法研究了CO和Cl2分子在TiO2(110)面上的吸附反应,通过计算体系的吸附结构、吸附能、电荷密度和态密度等性质,揭示了CO和Cl2共同吸附在TiO2(110)表面的行为机制。CO和Cl2在TiO2(110)面上的吸附存在相互促进的关系,共同吸附时其平均吸附能为-1.367 4 eV,Cl2能够被表面Ti原子捕获,表面Ti (5c)原子发生sd3轨道杂化,吸附发生时表面形成CO→TiO2(110)→Cl流向的瞬时电子流,态密度的分布显示TiO2(110)表面的Ti-O键强度被削弱,说明CO的存在对TiO2的氯化有促进作用,同时表面O原子被激活,其随着CO从表面解离形成CO2分子平均释放1.418 6 eV的能量,使得TiO2(110)结构被破坏,同时也为下一个Cl2分子提供了良好的吸附位。

    Abstract:

    The first principle calculation based on density functional theory(DFT) is used in this paper to investigate the adsorption behavior of CO and Cl2 on TiO2(110) surface. The behavioral mechanism of the co-adsorption of CO and Cl2 on the TiO2 (110) surface is revealed by the calculation of the adsorption structure, adsorption energy, charge density and density of states (DOS) of the system. The adsorption of both CO and Cl2 on the TiO2(110) surface was mutually reinforcing, and the average adsorption energy was -1.367 4 eV, and Cl2 could be captured by the surface Ti atom, the sd3 orbital hybridization happening on the surface Ti(5c) atom. When the adsorption reaction occurred, a transient electron flow CO→TiO2(110)→Cl was formed on the surface. The DOS showed that the strength of Ti-O bond on (110) surface was weakened, indicating that the presence of CO has a promoting effect on the chlorination of TiO2. Meanwhile, the surface O atoms was activated and the average energy of 1.418 6 eV was released as the dissociation of this O atom with CO from the surface to form CO2 molecules, which destroyed the structure of TiO2(110) and provided a good adsorption site for the next Cl2 molecules.

    参考文献
    [1] 王玉明, 刘瑞丰, 周荣会, 等. 制备四氯化钛过程中加碳氯化反应热力学[J]. 计算机与应用化学, 2006, 23(3):263-266.WANG Yuming, LIU Ruifeng, ZHOU Ronghui, et al. Thermodynamics on the reaction of carbochlorination of titania for getting titanium tetrachloride[J]. Computers and Applied Chemistry, 2006, 23(3):263-266. (in Chinese)
    [2] Adipuri A, Zhang G Q, Ostrovski O. Chlorination of titanium oxycarbide produced by carbothermal reduction of rutile[J]. Metallurgical and Materials Transactions B, 2008, 39(1):23-34.
    [3] Youn I J, Park K Y. Modeling of fluidized bed chlorination of rutile[J]. Metallurgical and Materials Transactions B, 1989, 20(6):959-966.
    [4] Zhou L, Sohn H Y. Mathematical modeling of fluidized-bed chlorination of rutile[J]. AIChE Journal, 1996, 42(11):3102-3112.
    [5] Morris A J, Jensen R F. Fluidized-bed chlorination rates of australian rutile[J]. Metallurgical Transactions B, 1976, 7(1):89-93.
    [6] Barin I, Schuler W. On the kinetics of the chlorination of titanium dioxide in the presence of solid carbon[J]. Metallurgical Transactions B, 1980, 11(2):199-207.
    [7] 邓国珠. 钛冶金[M]. 北京:冶金工业出版社,2010:109-146.DENG Guozhu. Metallurgy on titanium[M]. Beijing:Metallurgical Industry Press, 2010:109-146. (in Chinese)
    [8] Gamboa J A, Bohé A E, Pasquevich D M. Carbochlorination of TiO2[J]. Thermochimica Acta, 1999, 334(1/2):131-139.
    [9] Dunn W E. High temperature chlorination of titanium bearing minerals:part IV[J]. Metallurgical Transactions B, 1979, 10(2):271-277.
    [10] Gamboa J A, Pasquevich D M. A model for the role of carbon on carbochlorination of TiO2[J]. Metallurgical and Materials Transactions B, 2000, 31(6):1439-1446.
    [11] 王锦涛, 韩校宇, 刘守平, 等. Si、V对Fe-Al-Cr合金抗高温氧化性的影响[J]. 重庆大学学报, 2019,42(2):82-93.WANG Jintao, HAN Xiaoyu, LIU Shouping, et al. Effect of Si and V on high-temperature oxidation resistance of Fe-Al-Cr alloys[J]. Journal of Chongqing University, 2019,42(2):82-93. (in Chinese)
    [12] 谢奉妤, 高家诚, 王宁, 等. Zn掺杂锐钛矿TiO2的电子结构及光学性质的研究[J]. 重庆大学学报, 2017, 40(10):79-86.XIE Fengyu, GAO Jiacheng, WANG Ning, et al. Electronic structure and optical properties of Zn-doped anatase TiO2[J]. Journal of Chongqing University, 2017, 40(10):79-86. (in Chinese)
    [13] Perron H, Domain C, Roques J, et al. Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations[J]. Theoretical Chemistry Accounts, 2007, 117(4):565-574.
    [14] Lu J B, Yang K S, Jin H, et al. First-principles study of the electronic and magnetic properties of oxygen-deficient rutile TiO2(110) surface[J]. Journal of Solid State Chemistry, 2011, 184(5):1148-1152.
    [15] Vogtenhuber D, Podloucky R, Redinger J. Ab initio study of atomic Cl adsorption on stoichiometric and reduced rutile TiO2 (110) surfaces[J]. Surface Science, 2000, 454/455/456:369-373.
    [16] Hebenstreit E L D, Hebenstreit W, Geisler H, et al. The adsorption of chlorine on TiO2(110) studied with scanning tunneling microscopy and photoemission spectroscopy[J]. Surface Science, 2002, 505:336-348.
    [17] Vogtenhuber D, Podloucky R, Redinger J, et al. Ab initio and experimental studies of chlorine adsorption on the rutile TiO2(110) surface[J]. Physical Review B, 2002, 65(12):125411.
    [18] Inderwildi O R, Kraft M. Adsorption, diffusion and desorption of chlorine on and from rutile TiO2{110}:a theoretical investigation[J]. ChemPhysChem, 2007, 8(3):444-451.
    [19] Sorescu D C, Yates J T. Adsorption of CO on the TiO2(110) surface:a theoretical study[J]. The Journal of Physical Chemistry B, 1998, 102(23):4556-4565.
    [20] Yang Z X, Wu R Q, Zhang Q M, et al. First-principles study of the adsorption of CO on TiO2(110)[J]. Physical Review B, 2001, 63(4):045419.
    [21] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14(11):2717-2744.
    [22] Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J]. Journal of Physics:Condensed Matter, 1994, 6(40):8245-8257.
    [23] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865.
    [24] Muscat J, Swamy V, Harrison N M. First-principles calculations of the phase stability of TiO2[J]. Physical Review B, 2002, 65(22):224112.
    [25] Grant F A. Properties of rutile (tita杮汩極獭栠???????????????ぶ?づ??戠牯?嬠??嵤?婲桮愠湐杨?剳?????椱甹‵??夠???椳???刴??攼瑢?愾汛????浒敡捭桡慭湯楯獲瑴楨捹?獍琬甠摖祡?潤晥???獬畴戠?水??獩畮执?卓?慩摴獨漠牒瀠瑄椮漠湆?慲湳摴?摰楲獩獮潣捩楰慬瑥楳漠湣?潬湣??畡?獩畯扮?㈠??猠畴扨?传??????獴畩牣晳愠捯敦猠?瑴桯敩牣浨潩捯桭敥浴楲獩瑣爠祔??爼敳慵换琾椲漼港?扵慢爾爠楳敵牲学?嵣???灊灝氮椠敐摨?即畩牣晡慬挠敒?卶捩楥敷渠捂攬??代??水??代???㈩??????金???????扝爠?孨??嵊??楊畩???夬??坨慥湮朠???????愠湡??????敵瑣?慵汲??匠瑡畮摤礠?潬湥?捴慲牯扮潩湣?摰敲灯潰獥楲瑴楩潥湳?慯獦猠潡挠楗愼瑳敵摢 ̄眳椼琯桳?换愾瑏愼汳祵瑢椾挹????獢甾戠????獴略扲??牵数晰潯牲浴楥湤朠?扮礠?畨獥椠湔杩?搼敳湵獢椾琲礼?晳畵湢挾琨椱漱渰愩氠?瑵桲敦潡牣祥孛?嵝???畨敥氠???ひ?????????????????扨牥?孩??嵲?娠桃愬渠朲‰到????圱愳渨朴‰????‵?椹渭朱???堷??敢瑲 ̄慛氲???摍獡潲牴灳瑩楮潯湶?慣湨搠?搬椠獊獯潮捥楳愠瑄椠潒測?潔晲???獩甠扁?㈠??獥畣扴??潮湩?琠桳整??畣?獵畲扥????獔畩扏?佳??????獳畵牢显愠捳敵?慦?摣敥湳猠楡瑮祤?晥畦湦捥瑣楴漠湯慦氠?瑯桬敥潣牵祬?獲琠畡摤祳孯?嵢???灳瀠汵楳敩摮?匠畤物晦慦捥敲?卮捴椠敄湆捔攠???ぬ?ね????????????????????扵牲?孡??嵯?娠桐慨湹杳?奣????婨桥慭潩???????甠漲‰???攠琱?愴氨???攺挲漲洶瀵漹猭椲琲椶漷渰?洼敢捲栾慛渲椹獝洠獂?潴晥??畓?扐愬猠敋摲?潳硳祥朠敇測?捇慩牬牬楡敮爠獍?晊漮爠?挠桳敹浳楴捥慭污?汩潣漠灳楴湵杤?眠楯瑦栠?潨硥礠杳敵湲?畡湣捥漠略灮汥楲湧来?扩慣獳攠摡?潤渠?摴敲湵獣楴瑵祲?映畯湦挠瑔楩潏渼慳汵?琾栲攼漯牳祵?挾愨氱挱田氩愠瑢楹漠湦獩孲?嵴???潩浮扣畩獰瑬楥潳渠?慡湬摣??污慴浩敯???お?????????????????????997, 385(2/3):386-394.
    [30] Zhong H, Wen L Y, Zou C, et al. A mechanistic study of the interaction among C, N and Ti3O5(100) surface based on density functional theory[C]//TMS2015 Supplemental Proceedings. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2015:799-810.
    [31] Song E H, Zhu Y F, Jiang Q. Density functional theory calculations of adsorption of hydrogen fluoride on titanium embedded graphene[J]. Thin Solid Films, 2013, 546:124-127.
    [32] 杨亚丽, 陈文凯, 陆春海, 等. H2S在立方ZrO2(110)面的吸附与解离[J]. 无机化学学报, 2009, 25(8):1457-1463.YANG Yali, CHEN Wenkai, LU Chunhai, et al. Density functional theory study of H2S adsorption and decomposition on cubic ZrO2(110) surface[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(8):1457-1463. (in Chinese)
    [33] Wang Y, Hwang G S. Adsorption of Au atoms on stoichiometric and reduced TiO2(110) rutile surfaces:a first principles study[J]. Surface Science, 2003, 542(1/2):72-80.
    [34] Miller G J. Book review:solids and surfaces:a chemist's view of bonding in extended structures by R. Hoffmann[J]. Angewandte Chemie International Edition in En
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石胜云,温良英,曹娇,杨帆,徐建,张生富,杨仲卿,韩东升. CO和Cl2在TiO2(110)表面的吸附行为[J].重庆大学学报,2019,42(8):50-58.

复制
分享
文章指标
  • 点击次数:714
  • 下载次数: 902
  • HTML阅读次数: 1191
  • 引用次数: 0
历史
  • 收稿日期:2019-04-13
  • 在线发布日期: 2019-08-31
文章二维码