不同地应力条件下平行钻孔抽采瓦斯运移特性实验分析
作者:
中图分类号:

TD712+.51

基金项目:

国家科技重大专项资助项目(2016ZX05044);国家自然科学基金重点资助项目(51434003);重庆市基础科学与前沿技术研究资助项目(cstc2016jcyjA0117)。


Experimental analysis on the characteristics of gas migration extracted by parallel boreholes under different stress conditions
Author:
  • PENG Shoujian

    PENG Shoujian

    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIA Li

    JIA Li

    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Jiang

    XU Jiang

    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Chaoling

    ZHANG Chaoling

    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Shichao

    GUO Shichao

    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China;State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, P. R. China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用自主研发的"多场耦合煤层气开采物理模拟实验系统",开展了不同地应力水平下平行钻孔瓦斯抽采的物理模拟实验,研究结果表明:1)平行钻孔瓦斯抽采中,抽采前期压降曲线斜率大,中、后期压降曲线斜率相对较小,并且相邻抽采管之间瓦斯解吸速率较边界抽采管快,任意时刻平行或垂直抽采管方向气压变化值均关于抽采管对称,离抽采管抽采段越近,瓦斯解吸速率越快,瓦斯解吸速率与距离抽采管连接段远近无关;2)瓦斯抽采中,随着地应力增加,瓦斯解吸速率减缓,压降漏斗收缩变小,瓦斯有效解吸面积变小,且地应力对消除突出危险区域出现时间影响差异不明显,但随着地应力增加,消突范围渐缩小;3)瓦斯抽采中,瞬时流量随时间演化可分为急速升高、快速衰减和极限抽采三个阶段,并且随着地应力增加,瞬时流量峰值减小,瞬时流量衰减速率减缓,瓦斯累积流量降低,累积流量增长速率减缓,抽采效率降低。

    Abstract:

    With using the independently developed "multi-field coupling coalbed methane recovery physical simulation test system", physical simulation tests by parallel borehole gas drainage under different stress levels are carried out. The results are as follows:1) In parallel borehole gas extraction, the pressure drop curve slope in the early stage was large, while in the middle and late stage it was relatively small. The gas desorption rate between adjacent extraction pipes was faster than that of the boundary extraction pipe, and was parallel at any time. The change of pressure in the direction of vertical pumping pipe was symmetrical about the pumping pipe. The closer to the pumping stage of the pumping pipe, the faster the gas desorption rate, which was not related to the distance between the connection sections of the pumping pipe; 2) In the process of gas drainage, with stress increasing, gas desorption rate slowed down, pressure drop funnel shrank, and gas desorption area became smaller. Stress influenced the elimination of outburst hazardous areas, and the difference it brought about was not obvious at first, but with the increase of it, the scope of eliminating the conflict gradually decreased; 3) In the process of gas drainage, instantaneous flow rate evolution over time can be divided into three stages:rapid increase, rapid decay and limit extraction, and with the increase of stress, instantaneous flow peak value decreased, and its attenuation rate slowed down. The cumulative flow of gas was reduced, and its growth rate slowed down, resulting in reduction of extraction efficiency.

    参考文献
    [1] Cheng Y P, Wang L, Liu H Y, et al. Definition, theory, methods, and applications of the safe and efficient simultaneous extraction of coal and gas[J]. International Journal of Coal Science & Technology, 2015, 2(1):52-65.
    [2] Zhang J Y, Liu D M, Cai Y D, et al. Carbon isotopic characteristics of CH4 and its significance to the gas performance of coal reservoirs in the Zhengzhuang area, Southern Qinshui Basin, North China[J]. Journal of Natural Gas Science and Engineering, 2018, 58:135-151.
    [3] 尹光志, 王振, 张东明. 有效围压为零条件下瓦斯对煤体力学性质影响的实验[J]. 重庆大学学报, 2010, 33(11):129-133.YIN Guangzhi, WANG Zhen, ZHANG Dongming. Experiment of the gas effect on coal mechanical properties under zero effective confirming pressure[J]. Journal of Chongqing University, 2010, 33(11):129-133.(in Chinese)
    [4] 鲜学福. 我国煤层气开采利用现状及其产业化展望[J]. 重庆大学学报(自然科学版), 2000, 23(S1):1-5.XIAN Xuefu. The present situation of coal-bed methane mining and utilization in our country and looking forward to its industrialization[J]. Journal of Chongqing University(Natural Science Edition), 2000, 23(S1):1-5.(in Chinese)
    [5] 梁冰, 秦冰, 孙福玉, 等. 煤与瓦斯共采评价指标体系及评价模型的应用[J]. 煤炭学报, 2015, 40(4):728-735.LIANG Bing, QIN Bing, SUN Fuyu, et al. Application of evaluation index system of coal and gas co-extraction and evaluation model[J]. Journal of China Coal Society, 2015, 40(4):728-735.(in Chinese)
    [6] Aifantis E C. On the problem of diffusion in solids[J]. Acta Mechanica, 1980, 37(3/4):265-296.
    [7] Beskos D E, Aifantis E C. On the theory of consolidation with double porosity-Ⅱ[J]. International Journal of Engineering Science, 1986, 24(11):1697-1716.
    [8] Chen Z Y, Xiao Z X, Zou M. Research on mechanism of quantity discharge of firedamp from coal drift of headwork surface reflect coal and gas outburst[J]. International Journal of Hydrogen Energy, 2017, 42(30):19395-19401.
    [9] Cheng Y P, Wang L, Liu H Y, et al. Definition, theory, methods, and applications of the safe and efficient simultaneous extraction of coal and gas[J]. International Journal of Coal Science & Technology, 2015, 2(1):52-65.
    [10] Wang J C, Wu R L, Zhang P. Characteristics and applications of gas desorption with excavation disturbances in coal mining[J]. International Journal of Coal Science & Technology, 2015, 2(1):30-37.
    [11] 卢义玉, 刘小川, 汤积仁, 等. 热流固耦合作用下页岩渗透特性实验[J]. 重庆大学学报, 2016, 39(1):65-71.LU Yiyu, LIU Xiaochuan, TANG Jiren, et al. Effects of heat flow fluid-solid coupling on the characteristics of shale permeability[J]. Journal of Chongqing University, 2016, 39(1):65-71. (in Chinese)
    [12] 刘超, 黄滚, 赵宏刚, 等. 复杂应力路径下原煤力学与渗透特性试验[J]. 岩土力学, 2018, 39(1):191-198.LIU Chao, HUANG Gun, ZHAO Honggang, et al. Tests on mechanical and permeability characteristics of raw coal under complex stress paths[J]. Rock and Soil Mechanics, 2018, 39(1):191-198.(in Chinese)
    [13] 曹运兴, 张军胜, 田林, 等. 低渗煤层定向多簇气相压裂瓦斯治理技术研究与实践[J]. 煤炭学报, 2017, 42(10):2631-2641.CAO Yunxing, ZHANG Junsheng, TIAN Lin, et al. Research and application of CO2 gas fracturing for gas control in low permeability coal seams[J]. Journal of China Coal Society, 2017, 42(10):2631-2641.(in Chinese)
    [14] 孙四清, 张群, 闫志铭, 等. 碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J]. 煤炭学报, 2017, 42(9):2337-2344.SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9):2337-2344.(in Chinese)
    [15] 田靖安, 王亮, 程远平, 等. 煤层瓦斯压力分布规律及预测方法[J]. 采矿与安全工程学报, 2008, 25(4):481-485.TIAN Jing'an, WANG Liang, CHENG Yuanping, et al. Research on distribution rule and forecast method of gas pressure in coal seam[J]. Journal of Mining and Safety Engineering, 2008, 25(4):481-485.(in Chinese)
    [16] 尹光志, 何兵, 李铭辉, 等. 采动过程中瓦斯抽采流量与煤层支承应力的相关性[J]. 煤炭学报, 2015, 40(4):736-741.YIN Guangzhi, HE Bing, LI Minghui, et al. Coupling mechanism between flow rate of gas drainage and coal seam abutment stress under mining conditions[J]. Journal of China Coal Society, 2015, 40(4):736-741.(in Chinese)
    [17] 秦跃平, 刘鹏. 煤层瓦斯流动模型简化计算误差分析[J]. 中国矿业大学学报, 2016, 45(1):19-26.QIN Yueping, LIU Peng. Research on calculation error of simplified mathematical model of gas emission in coalseam[J]. Journal of China University of Mining & Technology, 2016, 45(1):19-26.(in Chinese)
    [18] 周睿, 闫斌移. 穿层钻孔径向流场瓦斯流量推算煤层瓦斯压力方法研究[J]. 岩石力学与工程学报, 2016, 35(S1):3147-3152.ZHOU Rui, YAN Binyi. Research on calculating gas pressure with gas flow in crossing borehole[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1):3147-3152.(in Chinese)
    [19] 岑培山, 李占五, 程洪亮, 等. 松软不稳定煤层顺层钻孔瓦斯流量衰减特征分析[J]. 煤炭科学技术, 2013, 41(11):72-74.CEN Peishan, LI Zhanwu, CHENG Hongliang, et al. Analysis on gas flow attenuation features from borehole along soft and unstable seam[J]. Coal Science and Technology, 2013, 41(11):72-74.(in Chinese)
    [20] 陈金刚, 徐平, 赖永星, 等. 煤储层渗透率动态变化效应研究[J]. 岩土力学, 2011, 32(8):2512-2516.CHEN Jingang, XU Ping, LAI Yongxing, et al. Research on dynamic variation effect of coal reservoirs permeability[J]. Rock and Soil Mechanics, 2011, 32(8):2512-2516.(in Chinese)
    [21] 马波, 许江, 刘龙荣, 等. 抽采长度对煤层气开采效果的影响分析[J]. 岩石力学与工程学报, 2017, 36(1):175-185.MA Bo, XU Jiang, LIU Longrong, et al. Analysis of the effect of the borehole length on the efficiency of coal-bed methane exploitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1):175-185.(in Chinese)
    [22] 袁梅, 许江, 李波波, 等. 不同抽采条件煤体瓦斯流量物理模拟试验[J]. 煤炭技术, 2016, 35(6):127-129.YUAN Mei, XU Jiang, LI Bobo, et al. Physical simulation experiment of gas flow in coal body under different drainage conditions[J]. Coal Technology, 2016, 35(6):127-129.(in Chinese)
    [23] 王维忠, 刘东, 许江, 等. 瓦斯抽采过程中钻孔位置对煤层参数演化影响的试验研究[J]. 煤炭学报, 2016, 41(2):414-423.WANG Weizhong, LIU Dong, XU Jiang, et al. Experimental study on the influence of drainage borehole position on dynamic parameters of coal seam in CBM recovery process[J]. Journal of China Coal Society, 2016, 41(2):414-423.(in Chinese)
    [24] Zhang C L, Xu J, Peng S J, et al. Dynamic evolution of coal reservoir parameters in CBM extraction by parallel boreholes along coal seam[J]. Transport in Porous Media, 2018, 124(2):325-343.
    [25] Tao Y Q, Liu D, Xu J, et al. Investigation of the Klinkenberg effect on gas flow in coal matrices:a numerical study[J]. Journal of Natural Gas Science and Engineering, 2016, 30:237-247.
    [26] 刘东, 许江, 尹光志, 等. 多场耦合煤层气开采物理模拟试验系统的研制和应用[J]. 岩石力学与工程学报, 2014, 33(S2):3505-3514.LIU Dong, XU Jiang, YIN Guangzhi, et al. Development and application of multi-field coupling test system for coal-bed methane(CBM) exploitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2):3505-3514.(in Chinese)
    [27] 陶云奇, 张超林, 许江, 等. 水力冲孔卸压增透物理模拟试验及效果评价[J]. 重庆大学学报, 2018, 41(10):69-77.TAO Yunqi, ZHANG Chaolin, XU Jiang, et al. Effect evaluation on pressure relief and permeability improvement of hydraulic flushing physical experiment[J]. Journal of Chongqing University, 2018, 41(10):69-77.(in Chinese)
    [28] 彭守建, 张超林, 梁永庆, 等. 抽采瓦斯过程中煤层瓦斯压力演化规律的物理模拟试验研究[J]. 煤炭学报, 2015, 40(3):571-578.PENG Shoujian, ZHANG Chaolin, LIANG Yongqing, et al. Physical simulation experiment on the evolution of gas pressure during CBM drainage[J]. Journal of China Coal Society, 2015, 40(3):571-578.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭守建,贾立,许江,张超林,郭世超.不同地应力条件下平行钻孔抽采瓦斯运移特性实验分析[J].重庆大学学报,2019,42(8):79-89.

复制
分享
文章指标
  • 点击次数:691
  • 下载次数: 906
  • HTML阅读次数: 524
  • 引用次数: 0
历史
  • 收稿日期:2019-03-01
  • 在线发布日期: 2019-08-31
文章二维码