攀枝花钛精矿冶炼钛渣中硫的影响
作者:
中图分类号:

TF823

基金项目:

国家重点研发计划项目(2018YFC1900500)。


Effects of sulfur on smelting Panzhihua titanium concentrate to produce titanium slag
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    调查显示攀枝花钛精矿硫(S)含量高达1.55%。笔者对攀枝花钛精矿冶炼钛渣中硫的影响进行了研究,结果表明,攀枝花钛精矿冶炼钛渣副产半钢S含量较高、C含量较低,出铁温度升高70~150℃,吨渣冶炼电耗增加近20 kW·h。钛精矿预氧化—冶炼钛渣工艺可降低产品S含量,消除S对冶炼过程的影响,是高硫钛精矿冶炼钛渣的有效途径。

    Abstract:

    According to relevant surveys, S content of Panzhihua titanium concentrate is as high as 1.55%. We studied the effects of sulfur on the smelting of titanium slag in Panzhihua titanium concentrate. The results show that smelting Panzhihua titanium concentrate to produce titanium slag, the S content of the by-product semi steel is higher, and the C content is lower. Furthermore, the temperature of molten metal increases by an amplitude of 70℃ to 150℃, and the power consumption per ton slag increases by nearly 20 kW·h. By comparison, producing titanium slag by smelting titanium concentrate after oxidative desulfurization can reduce the content of S and eliminate the influence of S on the smelting process. Therefore, pre-oxidation is an effective way to produce titanium slag with high-sulfur titanium concentrate.

    参考文献
    [1] 莫畏, 邓国珠, 罗方丞. 钛冶金[M]. 2版. 北京: 冶金工业出版社, 2006.MO Wei, DENG Guozhu, LUO Fangcheng. Titanium metallugy[M]. 2nd Ed. Beijing: Metallurgy Industry Press, 2006.
    [2] Murty CVGK, Upadhyay R, Asokan S. Electro smelting of ilmenite for production of TiO2 slag-potential of India as a global player[C]//Innovations in Ferro Alloy Industry, INFACON XII 2007. New Delhi: Indian Ferro Alloy Producers’ Association, 2007: 823-836.
    [3] Kotzé H, Bessinger D, Beukes J. Ilmenite smelting at Ticor SA[J]. Journal of the South African Institute of Mining and Metallurgy, 2006, 106(3): 165-170.
    [4] Zietsman J H, Pistorius P C. Process mechanisms in ilmenite smelting[J]. Journal of the South African Institute of Mining & Metallurgy, 2004, 104(11): 653-660.
    [5] Kotze H. Investigation into the effect of cooling conditions on the particle size distribution of titania slag[D]. Pretoria: University of Pretoria, 2008.
    [6] 攀枝花市钛矿行业企业联盟. 钛精矿(岩矿): Q/LM5104-TKL.001—2012[S]. 四川攀枝花: 攀枝花市钛矿行业企业联盟, 2012.Panzhihua Titanium Industry Association. Titanium concentrate(rock minerals): Q/LM5104-TKL.001—2012[S]. Panzhihua, Sichuan: Panzhihua Titanium Industry Association, 2012.
    [7] 高文元. 攀枝花钒钛磁铁矿兰家火山矿段金属硫化物的成因矿物学研究[D]. 沈阳: 东北大学, 2014.GAO Wenyuan. Genetic mineralogy study of metallic sulfide minerals from Lanjiahuoshan Ore Block of Panzhihua Fe-Ti-V oxide deposits[D]. Shenyang: Northeastern University, 2014. (in Chinese)
    [8] 攀枝花市科技发展战略研究所攀枝花市生产力促进中心. 攀枝花选矿厂选矿技术基本情况调查报告[J]. 攀枝花科技与信息, 2007, 32(3): 1-10.Panzhihua Institute of Science and Technology Development Strategy. Panzhihua Productivity Promotion Center. Investigation report on basic situation of mineral processing technology in Panzhihua Concentrator[J]. Panzhihua Sci-Tech & Information, 2007, 32(3): 1-10. (in Chinese)
    [9] 罗衍娟. 消除高硫含量钛铁矿产生H2S的影响[C]//2010年全国钛白粉行业年会论文集. 上海: 中国化工学会, 2010: 146-147.LUO Yanjuan. Eliminate the effects of H2S from high-sulfur ilmenite[C]//Proceedings of 2010 Annual Titanium Pigment Industry Conference. Shanghai: The Chemical Industry and Engineering Society of China, 2010: 146-147. (in Chinese)
    [10] 郑孝英, 陈沪飞, 刘钱钱, 等. 微波焙烧攀枝花钛渣试验研究[J]. 矿冶, 2018, 27(1): 25-29.ZHENG Xiaoying, CHEN Hufei, LIU Qianqian, et al. Experimental investigation on microwave roasting of Panzhihua titanium slag[J]. Mining and Metallurgy, 2018, 27(1): 25-29. (in Chinese)
    [11] 赵青娥. 表外钛精矿冶炼钛渣硫的走向分析[J]. 钢铁钒钛, 2018, 39(2): 97-101.ZHAO Qing’e. Study on trend of sulfur in titanium slag smelting process with the boundary titanium concentrate[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 97-101. (in Chinese)
    [12] 邓守强. 铁水中碳行为的研究[J]. 马钢技术, 1997(3): 3-18, 23.DENG Shouqiang. Study on carbon behavior in molten iron[J]. Ma Steel Technology, 1997(3): 3-18, 23. (in Chinese)
    [13] Gous M. An overview of the Namakwa Sands ilmenite smelting operations[J]. Journal of the South African Institute of Mining and Metallurgy, 2006, 106(6): 379-384.
    [14] 贺媛媛, 刘清才, 杨剑, 等. 含钛铁水流动性能研究[J]. 钢铁钒钛, 2010, 31(2): 10-14.HE Yuanyuan, LIU Qingcai, YANG Jian, et al. Experimental investigation on fluidity of hot metal bearing titanium[J]. Iron Steel Vanadium Titanium, 2010, 31(2): 10-14. (in Chinese)
    [15] 武拥军, 姜周华, 梁连科, 等. 钢的液相线温度的计算[J]. 钢铁研究学报, 2002, 14(6): 6-9.WU Yongjun, JIANG Zhouhua, LIANG Lianke, et al. Calculation on liquidus temperature of steel[J]. Journal of Iron and Steel Research, 2002, 14(6): 6-9. (in Chinese)
    [16] 李凯茂. 攀枝花钛精矿冶炼钛渣的经济品位及电耗分析[J]. 轻金属, 2015(10): 46-50.LI Kaimao. Economic analyzing on slag grade and power consumption for smelting Panzhihua titanium concentrates[J]. Light Metals, 2015(10): 46-50. (in Chinese)
    [17] 中华人民共和国环境保护部. 镁、钛工业污染物排放标准: GB25468-2010[S]. 北京: 中国环境科学出版社, 2010.Ministry of Environmental Protection of the People’s Republic of China. Emission standard of pollutants for magnesium and titanium industry: GB25468-2010[S]. Beijing: China Environmental Science Press, 2010. (in Chinese)
    [18] 张溅波, 赵青娥, 缪辉俊. 攀枝花钛铁矿氧化脱硫机理研究[J]. 钢铁钒钛, 2014, 35(6): 1-5.ZHANG Jianbo, ZHAO Qinge, MIAO Huijun. Study on the oxidative desulfurization mechanism of Panzhihua ilmenite[J]. Iron Steel Vanadium Titanium, 2014, 35(6): 1-5. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵青娥,吕学伟.攀枝花钛精矿冶炼钛渣中硫的影响[J].重庆大学学报,2019,42(10):42-49.

复制
分享
文章指标
  • 点击次数:746
  • 下载次数: 1014
  • HTML阅读次数: 533
  • 引用次数: 0
历史
  • 收稿日期:2019-05-28
  • 在线发布日期: 2019-11-02
文章二维码