流水线镁电解过程中杂质Fe控制技术
作者:
中图分类号:

TF822

基金项目:

国际科技交流与合作专项项目(2010DFB73170)。


Behavior of Fe in pipeline magnesium electrolysis process
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用电化学工作站、气冷阴极和熔盐综合测定仪等装置研究了流水线镁电解过程中杂质Fe的控制技术。结果表明:Fe离子易造成电流损失和镁损失。影响杂质Fe净化的因素有电流密度、电解槽电压、电极材质、反应时间、电解质温度和电解质扰动。杂质Fe的净化率随着槽电压的升高(低于MgCl2分解电压)、电流密度的增加、反应时间的延长而增加;杂质在石墨电极的净化率优于碳钢电极;在电解质温度为725℃±5℃时,杂质Fe的净化率最佳。在工业生产中,通过在槽内安装石墨直流电极,控制石墨电极电压在6~8 V等可提高电解槽的净化率。开展工业试验后电解质中的杂质Fe由0.028 9%降至0.009 1%,净化效果明显提升。

    Abstract:

    The behavior of Fe in pipeline magnesium electrolysis was studied by means of electrochemical workstation, gas-cooled cathode and molten salt comprehensive analyzer. The results show that Fe is liable to cause current loss and magnesium loss. The current density, cell voltage, electrode material, reaction time, electrolyte temperature and electrolyte disturbance are the main factors affecting the purification of Fe. The purifying rate of Fe increases with the increase of cell voltage (lower than the decomposition voltage of MgCl2), current density and reaction time, the purifying rate of Fe at graphite electrode is better than that at carbon steel electrode, and the purifying rate of Fe is the best when the electrolyte temperature is 725℃±5℃. In industrial production, by installing graphite DC electrode in the cell and controlling the voltage of graphite electrode within 6 V to 8 V, the purification rate of the cell can be improved. After industrial experiments, the impurity Fe in the electrolyte dropped from 0.028 9% to 0.009 1%, and the purification effect was obviously improved.

    参考文献
    [1] 阎守义. 试谈我国海绵钛生产工艺的优化途径[J]. 轻金属, 2016(6): 35-39.YAN Shouyi. Discussion on optimization approach of titanium sponge production process in China[J]. Light Metals, 2016(6): 35-39.(in Chinese)
    [2] 李开华. 镁热法生产海绵钛技术发展现状[J]. 材料导报, 2011(2): 225-228,244.LI Kaihua. Discussion on technical development status for sponge titanium production by magnesium reduction process[J]. Materials Review, 2011(2): 225-228,244.(in Chinese)
    [3] 姜宝伟, 蔡增新, 翁启钢. 海绵钛生产工艺中几种镁电解槽技术的对比分析[J]. 轻金属, 2014(9): 65-67.JIANG Baowei, CAI Zengxin, WENG Qigang. Comparative analysis of several magnesium reduction cell technologies in titanium sponge production[J]. Light Metals, 2014(9): 65-67.(in Chinese)
    [4]Okabe T H. Mass of electricity and technology: titanium metal and its production process[J]. The Journal of the Institute of Electrical Engineers of Japan, 2006, 126(12): 801-805.
    [5]Sun Z, Liu C L, Lu G M, et al. Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis cells[J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 522-531.
    [6]Liu C L, Sun Z, Lu G M, et al. 3D and 2D experimental views on the flow field of gas-evolving electrode cold model for electrolysis magnesium[J]. Flow Measurement and Instrumentation, 2015, 45: 415-420.
    [7]Duhaime P, Mercille P, Pineau M. Electrolytic process technologies for the production of primary magnesium[J]. Mineral Processing and Extractive Metallurgy, 2002, 111(2): 53-55.
    [8]Chen Z Y, Wang L J, Chou K C, et al. Comparison of different calculation methods of the new generation geometric model in predicting the density of NaCl-MgCl2-CaCl2 systems[J]. Journal of Solution Chemistry, 2014, 43(3): 577-584.
    [9]Choi M S, Lee C K, Lee G G, et al. Technology of molten salt electrolysis of magnesium chloride[J]. Materials Science Forum, 2010, 654/655/656: 799-802.
    [10] 姜宝伟, 朱卫平, 郭晓光. 镁电解多极槽技术与生产实践[J]. 轻金属, 2015(11): 50-54.JIANG Baowei, ZHU Weiping, GUO Xiaoguang. Production practice and analysis of multipolar magnesium cell technology[J]. Light Metals, 2015(11): 50-54.(in Chinese)
    [11] 朱福兴, 马尚润, 郑权, 等. 提高流水线镁电解电流效率的研究[J]. 有色金属(冶炼部分), 2015(2): 12-16.ZHU Fuxing, MA Shangrun, ZHENG Quan, et al. Study of improving current efficiency of pipeline magnesium electrolysis[J]. Nonferrous Metals(Extractive Metallurgy), 2015(2): 12-16.(in Chinese)
    [12] 马尚润, 朱福兴, 穆天柱, 等. 影响流水线镁电解槽电流效率的主要因素[J]. 轻金属, 2016(11): 47-51.MA Shangrun, ZHU Fuxing, MU Tianzhu, et al. The main factors of influence of magnesium reduction cells of the production line on current efficiency[J]. Light Metals, 2016(11): 47-51.(in Chinese)
    [13] 巴德, 福克纳. 电化学方法: 原理和应用[M]. 邵元华, 朱果逸, 董献堆, 等, 译. 北京: 化学工业出版社, 2005: 1-31.Bard A J, Faulkner L R. Electrochemical method: principle and application[M]. SHAO Yuanhua, ZHU Guoyi, DONG Xiandui, et al, trans. Beijing: Chemical Industry Press, 2005: 1-31. (in Chinese)
    [14] 张永健. 镁电解生产工艺学[M]. 长沙: 中南大学出版社, 2006: 326-346.ZHANG Yongjian. Electrolytic metallurgy of magnesium[M]. Changsha: Central South University Press, 2006: 326-346. (in Chinese)
    [15] 马尚润, 郑权, 朱福兴,等. 气冷阴极、熔盐电解装置及电解方法:201510081679.6[P]. 2017-03-22.MA Shangrun, ZHENG Quan, ZHU Fuxing, et al. Air cooled cathode, molten salt electrolysis device and electrolysis method: 201510081679.6[P]. 2017-03-22. (in Chinese)
    [16] 陈敏恒, 丛德滋, 方图南, 等. 化工原理[M]. 4版. 北京: 化学工业出版社, 2015.CHEN Minheng, CONG Dezi, FANG Tunan, et al. Principle of chemical industry[M]. 4th ed. Beijing: Chemical Industry Press, 2015. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马尚润,朱福兴,李开华.流水线镁电解过程中杂质Fe控制技术[J].重庆大学学报,2019,42(10):73-81.

复制
分享
文章指标
  • 点击次数:495
  • 下载次数: 1148
  • HTML阅读次数: 820
  • 引用次数: 0
历史
  • 收稿日期:2019-05-28
  • 在线发布日期: 2019-11-02
文章二维码