基于MIVM神经网络模型对合金组元活度的预测
作者:
中图分类号:

TF02

基金项目:

国家自然科学基金资助项目(51164032)。


Prediction of component activity in alloys by neural network model based on MIVM
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了使用分子相互作用体积模型(molecular interaction volume model,MIVM)准确便捷预测出合金溶液中组元的活度,建立了活度预测的BP(back propagation)神经网络模型和算法,模型的输入层为合金溶液中组元的实验活度系数,输出层为分子对位能相互作用参数,隐含层设定为一层。采用遗传算法优化BP神经网络模型各结构参数,在遗传算法中使用合金溶液中组元的无限稀活度系数的实验值和理论值的偏差作为适应度函数,以偏差最小为目标进行优化以保证BP神经网络的有效性。最后以Pb-Bi,Sn-Bi,Sn-Pb,Fe-Cu二元合金溶液中组元活度预测为例对BP神经网络模型和算法进行验证。结果表明:组元活度预测值与实验值之间的平均相对误差均小于4%,绝对偏差小于0.78,能满足工程计算要求。

    Abstract:

    A back propagation (BP) algorithm of the neural network was established so as to use Molecular Interaction Volume Model (MIVM) to predict the components activity in alloy solution accurately and conveniently. Its input layer is the experimental activity coefficient of components in alloy solution, output layers are molecular pair energy interaction parameters and hidden layer is set to one layer. The structural parameters in BP neural network model were optimized via genetic algorithms, where the deviation between the experimental and theoretical values of the infinite dilution activity coefficient as fitness function. The optimization was carried out with minimum deviation so as to ensure the validity of BP neural network. Finally, the BP neural network model and algorithm were validated by taking the binary alloy solutions of Pb-Bi, Sn-Bi, Sn-Pb and Fe-Cu as examples. The results show that the average relative errors between the predicted and experimental values of components activity in the alloys are less than 4% and the absolute deviation less than 0.78, which can meet the requirements of engineering calculation.

    参考文献
    [1] 魏寿昆. 活度在冶金物理化学中的应用[M]. 北京:中国工业出版社, 1964:63-65.WEI Shoukun. Application of activity in metallurgical physicochemistry[M]. Beijing:China Industry Press, 1964:63-65.
    [2] 周国治. 三元系中两相边界上的活度[J]. 中国科学, 1978, 5(3):312-324.ZHOU Guozhi. Activities on boundaries of two-phase region in ternary systems[J]. Science China, 1978, 5(3):312-324. (in Chiese)
    [3] 周国治. 新一代的溶液几何模型及其今后的展望[J]. 金属学报, 1997, 33(2):126-132.ZHOU Guozhi. New generation solution geometrical model and its further development[J]. Acta Metallrugica Sinica, 1997, 33(2):126-132. (in Chinese)
    [4] Chou K C, Wei S K. A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries[J]. Metallurgical and Materials Transactions B, 1997, 28(3):439-445.
    [5] Tao D P. A new model of thermodynamics of liquid mixtures and its application to liquid alloys[J]. Thermochimica Acta, 2000, 363(1/2):105-113.
    [6] 周兰花, 陶东平, 曾富洪. 基于遗传算法的MIVM预测合金溶液组元活度[J]. 稀有金属, 2011, 35(4):531-536.ZHOU Lanhua, TAO Dongping, ZENG Fuhong. Prediction of activity of component in liquid alloys by MIVM based on genetic algorithm[J]. Chinese Journal of Rare Metals, 2011, 35(4):531-536. (in Chinese)
    [7] 周兰花, 曾富洪, 高仕忠. MIVM参数的算法研究[J]. 材料科学与工程学报, 2011, 29(3):366-370.ZHOU Lanhua, ZENG Fuhong, GAO Shizhong. Algorithm research on the parameters from the MIVM[J]. Journal of Materials Science and Engineering, 2011, 29(3):366-370. (in Chinese)
    [8] 冯智莉, 易国洪, 李普山, 等. 并行化遗传算法研究综述[J]. 计算机应用与软件, 2018, 35(11):1-7, 80.FENG Zhili, YI Guohong, LI Pushan, et al. Review of parallel genetic algorithm[J]. Computer Applications and Software, 2018, 35(11):1-7, 80. (in Chinese)
    [9] Melkonian V. An integer programming model for the KenKen problem[J]. American Journal of Operations Research, 2016, 6(3):213-225.
    [10] Chebil K, Khemakhem M. A dynamic programming algorithm for the Knapsack Problem with Setup[J]. Computers & Operations Research, 2015, 64:40-50.
    [11] 徐星, 李垣志, 田坤云, 等. ACPSO-BP神经网络在矿井突水水源判别中的应用[J]. 重庆大学学报, 2018, 41(6):91-101.XU Xing, LI Yuanzhi, TIAN Kunyun, et al. Application of ACPSO-BP neural network in discriminating mine water inrush source[J]. Journal of Chongqing University, 2018, 41(6):91-101. (in Chinese)
    [12] 谢桂兰, 贺礼财, 肖春芽. 基于BP网络的蜂窝铝芯力学性能预测与灵敏度分析[J]. 材料导报, 2014, 28(24):144-148.XIE Guilan, HE Licai, XIAO Chunya. Mechanical properties prediction and sensitivity analysis for aluminum honeycomb core structure based on BP neural network[J]. Materials Review, 2014, 28(24):144-148. (in Chinese)
    [13] Yang J, Yang W, Wu W. A remark on the error-backpropagation learning algorithm for spiking neural networks[J]. Applied Mathematics Letters, 2012, 25(8):1118-1120.
    [14] 李静, 李方义, 周丽蓉, 等. 基于BP神经网络的产品生命周期评价敏感性分析[J]. 计算机集成制造系统, 2016, 22(3):666-671.LI Jing, LI Fangyi, ZHOU Lirong, et al. Sensitivity analysis for life cycle assessment of product based on back propagation neural network[J]. Computer Integrated Manufacturing Systems, 2016, 22(3):666-671. (in Chinese)
    [15] 尹斐, 杨洁红, 方雨晨, 等. 基于2种分析方法的补阳还五汤中有效成分提取工艺优化研究[J]. 中草药, 2018, 49(1):135-141.YIN Fei, YANG Jiehong, FANG Yuchen, et al. Optimization of extraction process of main active ingredients in Buyang Huanwu Decoction based on two analytical methods[J]. Chinese Traditional and Herbal Drugs, 2018, 49(1):135-141. (in Chinese)
    [16] 陶东平. 分子相互作用体积模型的基本特征和应用[J]. 昆明理工大学学报(自然科学版), 2004, 29(4):15-22.TAO Dongping. Basic features and applications of the molecular interaction volume[J]. Journal of Kunming University of Science and Technology(Science and Technology), 2004, 29(4):15-21(in Chinese).
    [17] 陶东平. 液态合金和熔融炉渣的性质[M]. 昆明:云南科技出版社, 1997:314-315.TAO Dongping. The properties of liquid alloys and molten slags[M]. Kunming:Yunnan Science and Technology Press, 1997:314-315.(in Chinese)
    [18] Hultgren R, Dessi P D, Hawkins D T, et al. Selected values of the thermodynamic properties of binary alloys[M/OL]. ASM. Metals Park, OH, 1973[2019-8-27].https://www.researchgate.net/publication/235214871_Selected_Values_of_Thermodynamic_Properties_of_Metal_Alloys.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周兰花,曾富洪.基于MIVM神经网络模型对合金组元活度的预测[J].重庆大学学报,2019,42(12):34-40.

复制
分享
文章指标
  • 点击次数:748
  • 下载次数: 942
  • HTML阅读次数: 600
  • 引用次数: 0
历史
  • 收稿日期:2019-07-20
  • 在线发布日期: 2019-11-21
文章二维码