初始粉体状态对氧化铝/氧化锆纳米陶瓷烧结性能的影响
作者:
中图分类号:

TQ174.4

基金项目:

中央高校基本科研业务费专项资金资助项目(CHD300102319303)和陕西省省级大学生创新创业训练计划项目资助(S201910710300)。


Effects of starting powders on sinterability of Al2O3-ZrO2 nanoceramics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过放电等离子体烧结(SPS),分别以纳米多晶粉体和非晶粉体作为原料制备了Al2O3-ZrO2纳米陶瓷复合材料,并研究了初始粉体状态对致密化过程和微观结构的影响。将纳米多晶粉体通过SPS烧结为致密的纳米块体,所需的最低烧结温度为1 400℃,所得产品的晶粒尺寸约为320 nm;非晶粉体完全致密所需的SPS温度为1 200℃,所得产品的晶粒尺寸约为150 nm。相比于纳米多晶粉体,非晶粉体可以在较低的温度下烧结成为致密纳米块体,我们将这一现象归结为非晶粉体在烧结中的相转变。这一发现为纳米陶瓷块体的低温烧结提供了新的思路。

    Abstract:

    In this work, Al2O3-ZrO2 nanocomposites were prepared by spark plasma sintering (SPS) of nanocrystalline and amorphous powders, respectoively, and effects of starting powders on the densification and microstructure of the nanocomposites were investigated. To obtain dense nanocomposites, the minimum SPS temperature for nanocrystal powders was 1 400℃, and the resulting grain sizes were about 320 nm. For amorphous powders, however, the hot pressing temperature was as low as 1 200℃, and the products exhibited finer grains of about 150 nm. It was confirmed that amorphous powders could be hot pressed into dense nanocomposites at lower temperatures than nanocrystalline powders, and the easier densification of amorphous powders was attributed to the phase transformation of amorphous particles in sintering. This finding could provide new guidance for low temperature sintering of bulk nanocomposites.

    参考文献
    [1] Wang J, Shaw L. Morphology-enhanced low-temperature sintering of nanocrystalline hydroxyapatite[J]. Advanced Materials, 2007, 19(17):2364-2369.
    [2] Roy R, Agrawal D, Cheng J P, et al. Full sintering of powdered-metal bodies in a microwave field[J]. Nature, 1999, 399(6737):668-670.
    [3] 周彬彬, 张宁, 赵介南, 等. Al2O3陶瓷低温烧结性能影响因素的研究进展[J]. 粉末冶金工业, 2019, 29(2):73-77.ZHOU Binbin, ZHANG Ning, ZHAO Jienan, et al. Research progress on influencing factors of low temperature sintering properties of Al2O3 ceramics[J]. Powder Metallurgy Industry, 2019, 29(2):73-77. (in Chinese)
    [4] Wu M C, Huang K T, Su W F. Microwave dielectric properties of doped Zn3Nb2O8 ceramics sintered below 950℃ and their compatibility with silver electrode[J]. Materials Chemistry and Physics, 2006, 98(2/3):406-409.
    [5] Anselmi-Tamburini U, Garay J E, Munir Z A. Fast low-temperature consolidation of bulk nanometric ceramic materials[J]. Scripta Materialia, 2006, 54(5):823-828.
    [6] 陈雅斓, 刘海昌, 滕元成. 热压烧结掺钕钛酸盐组合矿物固化体及其浸出性能[J]. 材料工程, 2015, 43(5):56-61.CHEN Yalan, LIU Haichang, TENG Yuancheng. Hot-press sintering of Nd-doped titanate compounding minerals form and its leaching performance[J]. Journal of Materials Engineering, 2015, 43(5):56-61. (in Chinese)
    [7] Chen I, Wang X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774):168-171.
    [8] 王喆, 张建良, 高冰, 等. Al2O3含量对烧结初始液流动行为的影响[J]. 重庆大学学报, 2015, 38(5):46-51.WANG Zhe, ZHANG Jianliang, GAO Bing, et al. Influence of Al2O3 content on the fluidity behavior of primary melts in sintering process[J]. Journal of Chongqing University, 2015, 38(5):46-51. (in Chinese)
    [9] Kumar K N P, Keizer K, Burggraaf A J, et al. Densification of nanostructured titania assisted by a phase transformation[J]. Nature, 1992, 358(6381):48-51.
    [10] Bowen P, Carry C. From powders to sintered pieces:forming, transformations and sintering of nanostructured ceramic oxides[J]. Powder Technology, 2002, 128(2/3):248-255.
    [11] Azar M, Palmero P, Lombardi M, et al. Effect of initial particle packing on the sintering of nanostructured transition alumina[J]. Journal of the European Ceramic Society, 2008, 28(6):1121-1128.
    [12] Yavetskiy R P, Baumer V N, Danylenko M I, et al. Transformation-assisted consolidation of Y2O3:Eu3+ nanospheres as a concept to optical nanograined ceramics[J]. Ceramics International, 2014, 40(2):3561-3569.
    [13] Rosenflanz A, Frey M, Endres B, et al. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides[J]. Nature, 2004, 430(7001):761-764.
    [14] Xu X Q, Hu X X, Ren S E, et al. Fine grained Al2O3-ZrO2 (Y2O3) ceramics by controlled crystallization of amorphous phase[J]. Journal of the European Ceramic Society, 2016, 36(7):1791-1796.
    [15] Wang J, Taleff E M, Kovar D. Superplastic deformation of Al2O3/Y-TZP particulate composites and laminates[J]. Acta Materialia, 2004, 52(19):5485-5491.
    [16] Chevalier J, De Aza A H, Fantozzi G, et al. Extending the lifetime of ceramic orthopaedic implants[J]. Advanced Materials, 2000, 12(21):1619-1621.
    [17] 陈蓓, 丁培道, 程川. ZrO2层状复合陶瓷压痕开裂力学分析[J]. 重庆大学学报(自然科学版), 2004, 27(7):65-67, 71.CHEN Bei, DING Peidao, CHENG Chuan. Indentation cracking mechanical analysis of ZrO2 laminated ceramics[J]. Journal of Chongqing University(Natural Science Edition), 2004, 27(7):65-67, 71. (in Chinese)
    [18] Kong Y, Kim H, Kim H. Production of aluminum-zirconium oxide hybridized nanopowder and its nanocomposite[J]. Journal of the American Ceramic Society, 2007, 90(1):298-302.
    [19] Srdić V V, Winterer M, Hahn H. Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis[J]. Journal of the American Ceramic Society, 2004, 83(8):1853-1860.
    [20] Oelgardt C, Anderson J, Heinrich J G, et al. Sintering, microstructure and mechanical properties of Al2O3-Y2O3-ZrO2 (AYZ) eutectic composition ceramic microcomposites[J]. Journal of the European Ceramic Society, 2010, 30(3):649-656.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范长颉,李鑫,许西庆,张鑫,牛书鑫.初始粉体状态对氧化铝/氧化锆纳米陶瓷烧结性能的影响[J].重庆大学学报,2019,42(12):67-73.

复制
分享
文章指标
  • 点击次数:659
  • 下载次数: 1376
  • HTML阅读次数: 1082
  • 引用次数: 0
历史
  • 收稿日期:2019-07-18
  • 在线发布日期: 2019-11-21
文章二维码