澎溪河不同高程消落带土壤磷的吸附特性
作者:
中图分类号:

X524

基金项目:

国家自然科学基金资助项目(41430750,41771520)。


Phosphorus adsorption characteristics of the soils at different altitudes in water-level-fluctuating zone of Pengxi River
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    消落带土壤磷吸附特性对库区水体的营养状态有重要影响。为研究不同高程消落带土壤磷吸附特性,选取了三峡库区澎溪河流域双江140,145,155,165,180 m高程土壤,进行磷等温吸附热力学试验,并探讨了不同高程消落带土壤磷吸附特性差异的原因。结果表明,随着高程的降低,消落带土壤吸附解吸平衡浓度EPC和磷最大吸附量Qmax逐渐增加,即磷吸附能力增强。结合消落带土壤颗粒表面特性分析、吸附特征参数与理化性质相关性分析的结果,认为消落带土壤具有较小的粒径分布,较高的有机质含量和Fe含量是影响不同高程消落带磷吸附能力的重要原因,且主要受到冬季淹水沉积和夏季降雨侵蚀的影响。低高程消落带土壤具有较强的磷吸附能力,对于控制库区水体富营养化具有一定的积极意义。

    Abstract:

    The phosphorus adsorption characteristics of the soils in water-level-fluctuating zone (WLFZ) have an important influence on the nutritional status of the reservoir water body. In order to study phosphorus adsorption characteristics of the soils at different altitudes in WLFZ, the 140 m, 145 m, 155 m, 165 m and 180 m altitudes soils of Shuangjiang in Pengxi River were selected for the thermodynamic experiment of phosphorus isothermal adsorption. The causes for the differences in phosphorus adsorption characteristics of soils from WLFZ were discussed. The results indicated that the adsorption-desorption equilibrium concentration (EPC) and the maximum adsorption amount (Qmax) of phosphorus gradually increased with the decrease of altitude, that is, the phosphorus adsorption capacity was enhanced. Combined with the analysis of the surface characteristics of the soil particles and that of the correlation between the adsorption characteristic parameters and the physical-chemical properties of the soil samples, it was considered that the soils from WLFZ had a smaller particle size distribution, higher organic matter content and Fe content, which were important factors affecting the phosphorus adsorption capacity, and the different characteristics of the soils were mainly affected by winter flooding sedimentation and summer rainfall erosion. Soils with low altitude has strong phosphorus adsorption capacity, which has certain positive significance for controlling eutrophication of the water bodies in Three Gorges Reservoir.

    参考文献
    [1] Schindler D W, Carpenter S R, Chapra S C, et al. Reducing phosphorus to curb Lake eutrophication is a success[J]. Environmental Science & Technology, 2016, 50(17):8923-8929.
    [2] Steinman A D, Ogdahl M E, Weinert M, et al. Water level fluctuation and sediment-water nutrient exchange in Great Lakes coastal wetlands[J]. Journal of Great Lakes Research, 2012, 38(4):766-775.
    [3] Zhao Y M, Qin Y W, Zhang L, et al. Water quality analysis for the Three Gorges Reservoir, China, from 2010 to 2013[J]. Environmental Earth Sciences, 2016, 75(17):1225.
    [4] Ji D B, Wells S A, Yang Z J, et al. Impacts of water level rise on algal bloom prevention in the tributary of Three Gorges Reservoir, China[J]. Ecological Engineering, 2017, 98:70-81.
    [5] Guo W, Wang H, Xu J, et al. Ecological operation for Three Gorges Reservoir[J]. Water Science and Engineering, 2011, 4(2):143-156.
    [6] Zhang Y H, Huang L L, Zhang Z B, et al. Phosphorus fractions and phosphorus adsorption characteristics of soils from the water-level fluctuating zone of nansi Lake, China[J]. Polish Journal of Environmental Studies, 2016, 25(2):865-872.
    [7] Du C, Ren X Y, Zhang L, et al. Adsorption characteristics of phosphorus onto soils from water level fluctuation zones of the Danjiangkou reservoir[J]. CLEAN-Soil, Air, Water, 2016, 44(8):975-983.
    [8] Bai J H, Ye X F, Jia J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions[J]. Chemosphere, 2017, 188:677-688.
    [9] Huang W, Chen X, Wang K, et al. Seasonal characteristics of phosphorus sorption by sediments from plain lakes with different trophic statuses[J]. Royal Society Open Science, 2018, 5(8):172237.
    [10] Wu Y H, Wang X X, Zhou J, et al. The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir, China[J]. Environmental Pollution, 2016, 214:282-289.
    [11] 徐建霞, 王建柱. 三峡库区香溪河消落带植被群落特征与土壤环境相关性[J]. 生态学杂志, 2018,12(37):3661-3669.XU Jianxia, WANG Jianzhu. Correlation analysis between vegetation and soil physical-chemical factors in the Xiangxi River water-level fluctuation zone of the Three Gorges Reservoir area[J]. Chinese Journal of Ecology, 2018, 12(37):3661-3669. (in Chinese)
    [12] 胡莺, 孙姣霞, 杨清伟, 等. EE2和BPA在三峡消落带不同水位梯度土壤中的吸附特性[J]. 中国科技论文, 2018, 13(12):1415-1422.HU Ying, SUN Jiaoxia, YANG Qingwei, et al. Adsorption property of 17α-ethinyl estradiol and bisphenol A in soils from the water-level-fluctuation zone of the Three Gorges Reservoir along a water level gradient[J]. China Sciencepaper, 2018, 13(12):1415-1422. (in Chinese)
    [13] Zhang B, Fang F, Guo J S, et al. Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of Three Gorges Reservoir[J]. Ecological Engineering, 2012, 40:153-159.
    [14] 朱强, 安然, 胡红青, 等. 三峡库区消落带土壤对磷的吸附和淹水下磷的形态变化[J]. 土壤学报, 2012,49(06):1128-1135.ZHU Qiang, AN Ran, HU Hongqing, et al. Adsorption and transformation of phosphorus in soils of the tidal zone of the Three Gorges Reservoir Region[J]. Acta Pedologica Sinica, 2012,49(06):1128-1135. (in Chinese)
    [15] 孙文彬, 杜斌, 赵秀兰, 等. 三峡库区澎溪河底泥及消落区土壤磷的形态及吸附特性研究[J]. 环境科学, 2013, 34(3):1107-1113.SUN Wenbin, DU Bin, ZHAO Xiulan, et al. Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of the Pengxi River, a tributary of the Three Gorges Reservoir[J]. Environmental Science, 2013, 34(3):1107-1113. (in Chinese)
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.LU Rukun. Soil agricultural chemical analysis method[M]. Beijing:China Agricultural Science and Technology Press, 2000. (in Chinese)
    [17] 李青霞, 唐洪武, 袁赛瑜. 干燥再淹没对细颗粒床沙磷吸附特性的影响研究[J]. 水利学报, 2017,48(12):1482-1489.LI Qingxia, TANG Hongwu, YUAN Saiyu. Effects of drying and re-flooding on phosphorus adsorption characteristic of fine bed sediment[J]. Journal of Hydraulic Engineering, 2017, 48(12):1482-1489. (in Chinese)
    [18] 陈春瑜, 徐晓梅, 邓伟明, 等. 滇池表层沉积物对磷的吸附特征[J]. 环境科学学报, 2014,34(12):3065-3075.CHEN Chunyu, XU Xiaomei, DENG Weiming, et al. Characteristics of phosphorus adsorption on surface sediments of Dianchi Lake[J]. Acta Scientiae Circumstantiae, 2014,34(12):3065-3075. (in Chinese)
    [19] Hongthanat N, Kovar J L, Thompson M L, et al. Phosphorus source:sink relationships of stream sediments in the Rathbun Lake watershed in southern Iowa, USA[J]. Environmental Monitoring and Assessment, 2016, 188(8):453.
    [20] 任豫霜. 澎溪河回水区沉积物微生物群落、内源营养释放及水华爆发的相关性研究[D]. 重庆:西南大学, 2017.REN Yushuang. Study on the microbial community in sediment of backwater area in Pengxi river and its correlation with river internal nutrient release and algal growth[D]. Chongqing:Southwest University, 2017.(in Chinese)
    [21] 姜伟. 三峡库区澎溪河高阳平湖水环境及内源磷释放关系研究[D]. 重庆:西南大学, 2017.JIANG Wei. Relationship of water environment and internal sediment nutrient release in Gaoyang Lake of Pengxi River in the Three Gorges Reservoir[D]. Chongqing:Southwest University, 2017. (in Chinese)
    [22] Daly K, Styles D, Lalor S, et al. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties[J]. European Journal of Soil Science, 2015, 66(4):792-801.
    [23] 洪欠欠, 颜晓, 魏宗强, 等. 长期施肥与土壤性质对水稻土磷吸附的影响[J]. 中国土壤与肥料, 2018(3):61-66.HONG Qianqian, YAN Xiao, WEI Zongqiang, et al. Effects of long-term fertilization on phosphorus sorption and soil properties in paddy soil[J]. Soil and Fertilizer Sciences in China, 2018(03):61-66. (in Chinese)
    [24] 揣小明, 杨柳燕, 程书波, 等. 太湖和呼伦湖沉积物对磷的吸附特征及影响因素[J]. 环境科学, 2014,35(3):951-957.CHUAI Xiaoming, YANG Liuyan, CHENG Shubo, et al. Characteristics and influencing factors of phosphorus adsorption on sediment in Lake Taihu and Lake Hulun[J]. Environmental Science, 2014, 35(3):951-957. (in Chinese)
    [25] 许光眉,施周,邓军. 石英砂负载氧化铁吸附除锑、磷的XRD,FTIR以及XPS研究[J]. 环境科学学报, 2007, 27(3):402-407.XU Guangmei, SHI Zhou, DENG Jun. Characterization of adsorption of antmiony and phosphate by using IOCS with XRD,FTIR and XPS[J]. Acta Scientiae Circumstantiae, 2007,27(3):402-407. (in Chinese)
    [26] Wang Y, Shen Z Y, Niu J F, et al. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions[J]. Journal of Hazardous Materials, 2009, 162(1):92-98.
    [27] 边凌涛, 张连科, 李海鹏, 等. 壳聚糖/羟基镧复合改性膨润土对Pb(Ⅱ)的吸附特性[J]. 重庆大学学报, 2018,41(5):79-87.BIAN Lingtao, ZHANG Lianke, LI Haipeng, et al. Adsorption property on Pb(II) of bentonite modified by chitosan/hydroxy-lanthanum[J]. Journal of Chongqing University, 2018,41(5):79-87. (in Chinese)
    [28] Linker R, Shmulevich I, Kenny A, et al. Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy[J]. Chemosphere, 2005, 61(5):652-658.
    [29] Madejová J, Pentrák M, Pálková H, et al. Near-infrared spectroscopy:a powerful tool in studies of acid-treated clay minerals[J]. Vibrational Spectroscopy, 2009, 49(2):211-218.
    [30] 丁悌平, 高建飞, 石国钰, 等. 长江水中悬浮物含量与矿物和化学组成及其地质环境意义[J]. 地质学报, 2013, 87(5):634-660.DING Tiping, GAO Jianfei, SHI Guoyu, et al. The contents and mineral and chemical compositions of suspended particulate materials in the Yangtze River, and their geological and environmental implications[J]. Acta Geologica Sinica, 2013, 87(5):634-660. (in Chinese)
    [31] 邹银洪, 张润宇, 陈敬安, 等. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6):578-589.ZOU Yinhong, ZHANG Ruiyu, CHEN Jingan, et al. Research advance in the application of clay minerals to phosphorus pollution control in eutrophic water bodies and sediments[J]. Advances in Earth Science, 2018, 33(6):578-589. (in Chinese)
    [32] 阎丹丹, 鲍玉海, 贺秀斌, 等. 三峡水库蓄水后长江干支流及消落带泥沙颗粒特征分析[J]. 水土保持学报, 2014, 28(4):289-292.YAN Dandan, BAO Yuhai, HE Xiubin, et al. Particle size characteristics of sediment in draw down area of upper Yangtze River and its major tributaries of Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2014, 28(4):289-292. (in Chinese)
    [33] 唐强,贺秀斌,鲍玉海,等. 三峡水库干流典型消落带泥沙沉积过程[J]. 科技导报, 2014, 32(24):73-77.TANG Qiang, HE Xiubin, BAO Yuhai, et al. Sedimentation processes in a typical riparian zone along the Yangtze mainstream of the Three Gorges Reservoir[J]. Science & Technology Review, 2014, 32(24):73-77. (in Chinese)
    [34] 李波, 李晔, 韩惟怡, 等. 人工降雨条件下不同粒径泥沙中氮磷流失特征分析[J]. 水土保持学报, 2016, 30(3):39-43.LI Bo, LI Ye, HAN Weiyi, et al. Loss characteristics of nitrogen and phosphorus in the sediment of different sizes under artificial rainfal[J]. Journal of Soil and Water Conservation, 2016, 30(3):39-43. (in Chinese)
    [35] 闫金龙. 铁氧化物-有机质复合物对磷的吸附与形态调控效应研究[D]. 重庆:西南大学, 2016.YAN Jinlong. Study on the adsorption of iron oxide-organic matter complex on phosphorus and its regulation effects on phosphorus fraction[D]. Chongqing:Southwest University, 2016. (in Chinese)
    [36] 霍洪江. 紫色土侵蚀泥沙磷素释放特征[D]. 重庆:西南大学, 2013.HUO Hongjiang. Phosphorus release characteristics of erosion sediments from purple soils[D]. Chongqing:Southwest University, 2013. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王翀,方芳,王超,袁子越,张蕊,周小明,郭劲松.澎溪河不同高程消落带土壤磷的吸附特性[J].重庆大学学报,2019,42(12):89-98.

复制
分享
文章指标
  • 点击次数:831
  • 下载次数: 942
  • HTML阅读次数: 720
  • 引用次数: 0
历史
  • 收稿日期:2019-07-02
  • 在线发布日期: 2019-11-21
文章二维码