基于改进EEMD的卷积神经网络滚动轴承故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:

国家自然科学基金资助项目(51405505)


Fault diagnosis of rolling bearing based on improved EEMD and convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    集合经验模态分解(EEMD,ensemble empirical mode decomposition)对信号进行分解,得到的模态函数(IMF,Intrinsic model function)在2端点存在严重的发散现象,如果将分解结果直接应用到故障诊断系统中,会导致诊断的准确率下降。首先将支持向量机(SVM,support vector machine)和EEMD算法结合进行信号分解,并利用仿真信号进行可靠性分析;其次对SVM (support rector machine)-EEMD分解的分量进行选择后再分解并构建能量向量,最后和卷积神经网络结合,构建滚动轴承故障诊断模型并通过实验验证。结果表明,改进EEMD算法可以有效缓解端点发散问题,构建的故障诊断模型提高了故障诊断精度。

    Abstract:

    EEMD(ensemble empirical mode decomposition)is an analysis method for signal decomposition.However,there is serious divergence in the two endpoints of its modal function (IMF). If the decomposition results are directly applied to the fault diagnosis system, the diagnosis accuracy will decrease. In the paper, support vector machine (SVM) and EEMD algorithm were combined to decompose signal and the reliability analysis was conducted with simulation signal. After selecting the components of SVM-EEMD decomposition, the signal was decomposed further and the energy vector was constructed. Finally, with a combination of SVM-EEMD and convolutional neural network, rolling bearing fault diagnosis model was constructed and verified by experiment.The experimental comparison results show that the improved EEMD algorithm can effectively solve the problem of the endpoints divergence, and the fault diagnosis model constructed improves the fault diagnosis accuracy.

    参考文献
    相似文献
    引证文献
引用本文

何江江,李孝全,赵玉伟,张保山,丁海斌.基于改进EEMD的卷积神经网络滚动轴承故障诊断[J].重庆大学学报,2020,43(1):82-89.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-15
  • 出版日期:
文章二维码