柱坐标系下修正弹性应力波理论及数值分析
作者:
中图分类号:

O347.4

基金项目:

国家自然科学基金(11372365,11072276)。


Wave theory of modified elasticity under column coordinate system and numerical analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    指出了传统的波动理论存在的一些局限性和不足。给出了修正弹性应力波理论的建立推导过程。完成了波动方程从张量状态到柱坐标系下的转换过程,得到了柱坐标系下的波动方程。建立了波动变量在加载面上与载荷及速度的关系,应力波在自由面上发生反射时边界条件对波动变量的影响。通过使用Matlab编程计算了应力波在几何模型为z方向无限长的空心圆柱结构中的传播过程以及应力波在遇到边界时的反射情况。计算结果显示了应力波随时间在结构中的传播方式,应力波在加载面上会产生2个波,即体积波和形变波,遇到边界后会反射出2个波。同时体积波和形变波的第一部分复合在一起形成一个复合脉冲以相同的波速运动。

    Abstract:

    In this paper, some boundednesses and inadequacies of the traditional fluctuation theory were pointed out. Then the establishment and derivation process of a modified elastic wave theory was given. The conversion process of wave equation from tensor state to column coordinate system was completed and the wave equation under column coordinate system was obtained. The relationship between the fluctuation variables and the load and velocity on the loading surface was established, revealing the influence of the boundary condition on the fluctuation variables when the stress wave reflection occurred on the free surface. By using Matlab programming, propagation process of the stress wave was calculated in the hollow cylindrical structure with an infinite length in the z direction of the geometric model and so was its reflection when encountering with the boundary. The calculation results showed the propagation process of stress wave in the structure with time, during which the stress wave would produce two waves on the loading surface, namely the volume wave and the deformation wave, and four waves would be reflected when encountering the boundary. At the same time, the volume wave and the first part of the deformation wave would be combined to form a composite pulse moving at the same wave speed.

    参考文献
    [1] 符力耘. 地震波探测地质构造复杂性的定量分析方法[J]. 中国科学(D辑:地球科学), 2009, 39(9):1179-1190. FU Liyun. Quantitative assessment of the complexity of geological structures in terms of seismic propagators[J]. Science in China(Series D:Earth Sciences), 2009, 39(9):1179-1190.(in Chinese)
    [2] 卢昌海. 时空的乐章:引力波百年漫谈(十)[J]. 现代物理知识, 2018, 30(4):53-58. LU Changhai. The movement of time and space:the gravitational wave in the past 100 years (10)[J]. Modern Physics, 2018, 30(6):30-36. (in Chinese)
    [3] 何卫忠, 樊宝珍. 声发射技术在发电设备检测中的应用[J]. 热力发电, 2006, 35(7):73. HE Weizhong, FAN Baozhen. Application of acoustic emission technology in detection for power generation equipment[J]. Thermal Power Generation, 2006, 35(7):73. (in Chinese)
    [4] 杜忠华. 动能弹侵彻陶瓷复合装甲机理[D]. 南京:南京理工大学, 2002. DU Zhonghua. Mechanics research on penetration of KE-projectile to ceramic composite amour[D]. Nanjing:Nanjjing University of Science and Technology, 2002. (in Chinese)
    [5] 朱建士, 陈裕泽. 核武器研制中的力学问题[J]. 力学与实践, 2002, 24(1):67-71. ZHU Jianshi, CHEN Yuze. Mechanics in research and development of nuclear weapons[J]. Mechanics in Engineering, 2002, 24(1):67-71.(in Chinese)
    [6] 关克, 惠东. 弹药家族之四:穿甲弹:装甲的克星[J]. 现代军事, 2003(10):59-61. GUAN Ke, HUI Dong. The ammunition family:armor-piercing projectile:armor nemesis[J]. Conmilit, 2003(10):59-61.(in Chinese)
    [7] 姜鹏飞, 唐德高, 龙源. 不耦合装药爆破对硬岩应力场影响的数值分析[J]. 岩土力学, 2009, 30(1):275-279. JIANG Pengfei, TANG Degao, LONG Yuan. Numerical analysis of influence of uncoupled explosive-charge structure on stress field in hard rocks[J]. Rock and Soil Mechanics, 2009, 30(1):275-279.(in Chinese)
    [8] 吴云鹏, 蔡忠军. 液体弹性波在医疗中的应用[J]. 力学学报, 1978, 10(2):102-106,171. WU Yunpeng, CAI Zhongjun. Application of liquid elastic wave in medical treatment[J]. Acta Mechanica Sinica, 1978, 10(2):102-106, 171. (in Chinese)
    [9] Yang C, Gao J, Wang H Y, et al. Effects of hypothalamus destruction on the level of plasma corticosterone after blast injury and its relation to interleukin-6 in rats[J]. Cytokine, 2011, 54(1):29-35.
    [10] Smith J E. The epidemiology of blast lung injury during recent military conflicts:a retrospective database review of cases presenting to deployed military hospitals, 2003-2009[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2011, 366(1562):291-294.
    [11] Cernak I. The importance of systemic response in the pathobiology of blast-induced neurotrauma[J]. Frontiers in Neurology, 2010, 1:151.
    [12] Adams S, Condrey J A, Tsai H W, et al. Respiratory responses following blast-induced traumatic brain injury in rats[J]. Respiratory Physiology & Neurobiology, 2014, 204:112-119.
    [13] Graff K F. Wave motion in elastic solids[M].[S.l.]:Ohio State University Press, 1975.
    [14] Meyers M A. Dynamic behavior of materials[M]. New York:A Wiley Interscience Publication, 1994.
    [15] Mindlin R D, Tiersten H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1):415-448.
    [16] Mindlin R D, Tiersten H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1):415-448.
    [17] Mindlin R D. Micro-structure in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1964, 16(1):51-78.
    [18] Koiter W T. Couple-stresses in the theory of elasticity:I and II[J]. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 1964, 67:17-44.
    [19] Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity:theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2):475-487.
    [20] Eringen A C. Linear theory of micropolar elasticity[J]. Journal of Mathematics and Mechanics, 1966,15(6):909-923.
    [21] Eringen A C. Theory of micro polar elasticity[M]. New York and London:Mathematical Fundamentals, Academic Press, 1968.
    [22] Aifantis E C. Update on a class of gradient theories[J]. Mechanics of Materials, 2003, 35(3/4/5/6):259-280.
    [23] Georgiadis H G, Vardoulakis I, Lykotrafitis G. Torsional surface waves in a gradient-elastic half-space[J]. Wave Motion, 2000, 31(4):333-348.
    [24] Georgiadis H G, Velgaki E G. High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects[J]. International Journal of Solids and Structures, 2003, 40(10):2501-2520.
    [25] Ottosen N S, Ristinmaa M, Ljung C. Rayleigh waves obtained by the indeterminate couple-stress theory[J]. European Journal of Mechanics-A, 2000, 19(6):929-947.
    [26] Parfitt V R, Eringen A C. Reflection of plane waves from the flat boundary of a micropolar elastic half-space[J]. The Journal of the Acoustical Society of America, 1969, 45(5):1258-1272.
    [27] 刘占芳, 郭原, 唐少强, 等. 弹性应力波的双脉冲结构与平板冲击试验验证[J]. 应用数学和力学, 2018, 39(3):249-265. LIU Zhanfang, GUO Yuan, TANG Shaoqiang, et al. Dual pulse wave structure of elastic stress waves and plate impact verification[J]. Applied Mathematics and Mechanics, 2018, 39(3):249-265. (in Chinese)
    [28] 杜丘美. 动态应力时空演化与结构冲击破坏模式的研究[D]. 重庆:重庆大学, 2018. DU Qiumei. Study on temporal and spatial evolution of dynamic stress and corresponding failure modes[D]. Chongqing:Chongqing University, 2018. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金红春,刘占芳.柱坐标系下修正弹性应力波理论及数值分析[J].重庆大学学报,2020,43(2):100-111.

复制
分享
文章指标
  • 点击次数:635
  • 下载次数: 1210
  • HTML阅读次数: 1160
  • 引用次数: 0
历史
  • 收稿日期:2019-06-26
  • 在线发布日期: 2020-03-11
  • 出版日期: 2020-02-29
文章二维码