基于正交试验法的厢式货车气动减阻优化
作者:
中图分类号:

V211.7

基金项目:

福建省科技创新平台项目(2016H2003);福建省中青年教师教育科研项目(科技)(JT180445)。


Optimization of pneumatic drag reduction of van type truck based on orthogonal test method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了优化某厢式货车的气动阻力系数,设计了驾驶室前部仿生减阻结构、顶部和侧部涡流发生器、底部涡流发生器等3种气动减阻装置。研究了3种单一气动减阻装置主要相关参数对气动阻力的影响,分别从货车外流场的速度轨迹、压力分布和湍动能分布等3方面详细分析了各单一气动减阻装置的减阻效果。在此基础上采用正交试验法对3种气动减阻装置的主要参数进行优化,获得最优减阻货车模型。研究表明:驾驶室前部突出部分的长度对货车整车气动阻力系数的影响比倾角更大;最优货车头部形状的倾角和长度分别为135 °和300 mm,该模型的气动阻力系数为0.721 4,相对于货车原始模型的减阻率为8.93%;涡流发生器的高度和位置对货车的减阻效果均有较大的影响;涡流发生器可以增加货车尾部分离区流场的能量,使得尾涡区减小,气动压差阻力减小;3种气动减阻装置对货车气动阻力系数的影响大小依次为:底部涡流发生器、货车前部仿生减阻结构、顶部和侧部涡流发生器,其最优厢式货车模型的空气阻力系数为0.683 3,其复合减阻装置的最佳减阻率为13.8%。

    Abstract:

    In order to optimize the aerodynamic drag coefficient of a van type truck, three kinds of pneumatic drag reducing devices such as the bionic drag reduction structure of the front part of the cab, the top and side vortex generators, and the bottom vortex generator are designed. The effects of main parameters of three kinds of single pneumatic drag reducing devices on aerodynamic drag are studied. The drag reduction effect of each pneumatic drag reducing device is analyzed in detail from three aspects:speed trajectory, pressure distribution and turbulent kinetic energy distribution,on the basis of which, the main parameters of the three kinds of pneumatic drag reducing devices are optimized by orthogonal test method, and the truck model with optimal drag reduction is obtained. The research shows that the influence of the length of the front part of the cab on the aerodynamic drag coefficient of the truck is greater than that of the tilt angle. The inclination angle and length of the optimal truck head shape are 135ånd 300 mm, respectively. The aerodynamic drag coefficient of the model is 0.721 4, and the drag reduction rate is 8.93% compared with the original model of the truck. The height and position of the vortex generator have a great influence on the drag reduction effect of the truck. The vortex generator can increase the energy of the flow field in the separation area of the tail of the truck, and reduce the tail vortex area and the pneumatic differential pressure. The order of influence of the three kinds of pneumatic drag reducing devices on the aerodynamic drag coefficient of the truck is as follows:bottom vortex generator, the bionic drag reduction structure of the front part of the cab, and top and side vortex generators. The air drag coefficient of the optimal van type truck model is 0.683 3, and the optimal drag reduction rate of the composite drag reducing device is 13.8%.

    参考文献
    [1] Peng J, Wang T, Yang T T, et al. Research on the aerodynamic characteristics of tractor-trailers with a parametric cab design[J]. Applied Sciences, 2018, 8(5):791.
    [2] Schaut N, Sengupta R. Aerodynamic optimization of trailer add-on devices fully-and partially-skirted trailer configurations[J]. SAE International Journal of Commercial Vehicles, 2015, 8(2):695-704.
    [3] Lo K H, Kontis K. Flow characteristics over a tractor-trailer model with and without vane-type vortex generator installed[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 159:110-122.
    [4] Hoffmann F, Schmidt H J, Nayeri C, et al. Drag reduction using base flaps combined with vortex generators and fluidic oscillators on a bluff body[J]. SAE International Journal of Commercial Vehicles, 2015, 8(2):705-712.
    [5] 李斌斌, 姚勇, 印帅, 等. 基于涡流发生器的Ahmed模型分离流被动控制实验[J]. 西南科技大学学报, 2016, 31(3):95-101.LI Binbin, YAO Yong, YIN Shuai, et al. Experimental investigation on passive control of Ahmed model separation flow based on vortex generator[J]. Journal of Southwest University of Science and Technology, 2016, 31(3):95-101.(in Chinese)
    [6] 张英朝,丁伟,陈涛,等.商用车驾驶室导流罩气动造型设计[J].汽车工程, 2014,36(9):1063-1067.ZHANG Yingchao,DING Wei,CHEN Tao, et al. Aerodynamic styling of fairing for commercial vehicle cab[J]. Automotive Engineering, 2014, (36)9:1063-1067.(in Chinese)
    [7] Kim J J, Lee S, Kim M, et al. Salient drag reduction of a heavy vehicle using modified cab-roof fairings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164:138-151.
    [8] Kim J J, Hong J, Lee S J. Bio-inspired cab-roof fairing of heavy vehicles for enhancing drag reduction and driving stability[J].International Journal of Mechanical Sciences, 2017, 131:868-879.
    [9] 朱忠华, 张雷, 许志宝, 等. 汽车后扰流板对外气动性能影响的研究[J]. 汽车技术, 2017(5):19-23.ZHU Zhonghua, ZHANG Lei, XU Zhibao, et al. Research on influence of rear spoiler on external aerodynamic performance[J]. Automobile Technology, 2017(5):19-23.(in Chinese)
    [10] 胡兴军, 李腾飞, 王靖宇, 等. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(3):595-601.HU Xingjun, LI Tengfei, WANG Jingyu, et al. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(3):595-601.(in Chinese)
    [11] Woodiga S, Salazar D M, Wewengkang P, et al. Skin-friction topology on tail plate for tractor-trailer truck drag reduction[J]. Journal of Visualization, 2018:1-13.
    [12] Lee E J, Lee S J. Drag reduction of a heavy vehicle using a modified boat tail with lower inclined air deflector[J]. Journal of Visualization, 2017, 20(4):743-752.
    [13] 张勇,潘正宇,谷正气,等.基于鲨鱼鳍的汽车车身仿生气动减阻研究[J].汽车工程,2017,39(9):1018-1024.ZHANG Yong, PAN Zhengyu, GU Zhengqi, et al. A research on bionic aerodynamic drag reduction of vehicle body based on shark fins[J]. Automotive Engineering, 2017,39(9):1018-1024.(in Chinese)
    [14] 李明达, 隗海林, 门玉琢, 等. 复杂底部结构下的重型载货汽车气动阻力[J]. 吉林大学学报(工学版), 2017, 47(3):731-736.LI Mingda, KUI Hailin, MEN Yuzhuo, et al. Aerodynamic drag of heavy duty vehicle with complex underbody structure[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3):731-736.(in Chinese)
    [15] Khosravi M, Mosaddeghi F, Oveisi M, et al. Aerodynamic drag reduction of heavy vehicles using append devices by CFD analysis[J]. Journal of Central South University, 2015, 22(12):4645-4652.
    [16] 王新宇, 王登峰, 范士杰, 等. 商用车空气动力学附加装置减阻技术的研究及应用[J]. 机械工程学报, 2011, 47(6):107-112.WANG Xinyu, WANG Dengfeng, FAN Shijie, et al. Research and application of aerodynamic drag reduction devices on commercial vehicle[J]. Journal of Mechanical Engineering, 2011, 47(6):107-112.(in Chinese)
    [17] 杨帆, 胡阳洋, 王建华. 重型卡车风阻优化[J]. 交通运输工程学报, 2013, 13(6):54-60.YANG Fan, HU Yangyang, WANG Jianhua. Optimization of wind resistance for heavy truck[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6):54-60.(in Chinese)
    [18] 屈贤, 余烽. 基于正交试验设计的阶背车尾部结构优化[J]. 汽车安全与节能学报, 2017, 8(1):59-64.QU Xian, YU Feng. Optimization on stepping automotive wake structures based on orthogonal test method[J]. Journal of Automotive Safety and Energy, 2017, 8(1):59-64.(in Chinese)
    [19] 杨小龙, 邹宏伟, 张泽坪. 厢式货车尾部非光滑表面导流板减阻效果研究[J]. 汽车工程, 2016, 38(7):815-821.YANG Xiaolong, ZOU Hongwei, ZHANG Zeping. A study on the drag reduction effects of rear deflector with non-smooth surface for a cargo van[J]. Automotive Engineering, 2016, 38(7):815-821.(in Chinese)
    [20] 谷正气, 申红丽, 杨振东, 等. 汽车空调风道改进及对乘员热舒适性影响分析[J]. 重庆大学学报, 2013, 36(8):91-96, 104.GU Zhengqi, SHEN Hongli, YANG Zhendong, et al. Improvement of vehicle air-conditioning duct and analysis of its impact on occupant thermal comfort[J]. Journal of Chongqing University, 2013, 36(8):91-96, 104.(in Chinese)
    [21] 李以农, 王雷, 柳承峰, 等. 汽油机歧管式催化转化器流固耦合热应力分析[J]. 重庆大学学报, 2012, 35(4):1-6.LI Yinong, WANG Lei, LIU Chengfeng, et al. Fluid-structure thermal simulation of gasoline engine manifold catalytic converter[J]. Journal of Chongqing University, 2012, 35(4):1-6.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许建民,范健明.基于正交试验法的厢式货车气动减阻优化[J].重庆大学学报,2020,43(3):12-26.

复制
分享
文章指标
  • 点击次数:893
  • 下载次数: 1139
  • HTML阅读次数: 714
  • 引用次数: 0
历史
  • 收稿日期:2019-10-05
  • 在线发布日期: 2020-03-31
文章二维码