基于平面应变和沿晶断裂条件下剪切滑移作用的页岩可压性评价方法
作者:
中图分类号:

TE377

基金项目:

国家自然科学基金资助项目(51804042);长江大学油气资源与勘探技术教育部重点实验室开放基金资助项目(K2018-09);国家重大科技专项资助项目(2016ZX05060004);湖北省教育厅科学研究计划资助项目(Q20181313);长江大学青年科研支持计划长江青年基金资助项目(2016cqn045)。


A method for evaluating shale fracability based on shear slip fractures under plane strain and intergranular fracture
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    水平井分段压裂可使人工裂缝与页岩发育的大量天然裂缝、层理等结构弱面相交形成复杂缝网,剪切滑移型裂缝是缝网的重要组成部分,寻求由页岩剪切滑移作用主导的可压性具有重要意义。考虑真实页岩破坏的平面应变和沿晶断裂条件,从裂纹(裂缝)微观形态入手,建立了断裂韧性计算方法;该方法的计算结果与实验测试结果对比,平均误差为2.93%;以某页岩气水平井测井数据为基础,绘制了基于断裂韧性指数进行可压性评价的全井筒连续剖面,对比压后测试结果,证实该可压性评价方法的可靠性,为页岩气高效开发提供理论参考。

    Abstract:

    Horizontal well fracturing combines the artificial fracture and a large number of structural weak surface, such as natural fracture or bedding, forming a complex network, an important section of which is shear slip fracture. Therefore, it will be of great significance to search for shale fracability. With the plane strain and intergranular fracture condition of real shale failure taken into account, and with the focus on the microscopic morphology of shear slip fracture, a method for calculating fracture toughness of shear slip fracture under plane strain was established. Compared with the experimental results, the average error of the method was 2.93%. Based on the logging data and fracture toughness index of a horizontal shale gas well, the whole wellbore continuous profile of fracability evaluation was drawn. By comparing the production after hydraulic fracturing, the reliability of this method was verified, which provided a theoretical reference for efficient development of shale gas.

    参考文献
    [1] 新华社.我国最大页岩气田2017年产气量突破60亿立方米[EB/OL].(2018-01-04)[2019-06-15]. http://www.gov.cn/xinwen/2018-01/04/content_5253201.htm.Xinhua Press. China's largest shale gas field in 2017 exceeded 6 billion cubic meters of gas production[EB/OL]. (2018-01-04)[2019-06-15]. http://www.gov.cn/xinwen/2018-01/04/content_5253201.htm. (in Chinese)
    [2] Mayerhofer M J, Lolon E, Warpinski N R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010, 25(1):89-98.
    [3] King G E. Thirty years of gas shale fracturing:what have we learned?[C]//SPE Annual Technical Conference and Exhibition, Florence, Italy. Society of Petroleum Engineers, 2010.
    [4] 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012, 19(5):356-363.TANG Ying, XING Yun, LI Lezhong, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 2012, 19(5):356-363. (in Chinese)
    [5] 袁俊亮, 邓金根, 张定宇, 等. 页岩气储层可压裂性评价技术[J]. 石油学报, 2013, 34(3):523-527.YUAN Junliang, DENG Jingen, ZHANG Dingyu, et al. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 2013, 34(3):523-527. (in Chinese)
    [6] 金衍, 陈勉, 张旭东. 利用测井资料预测深部地层岩石断裂韧性[J]. 岩石力学与工程学报, 2001, 20(4):454-456.JIN Yan, CHEN Mian, ZHANG Xudong. Determination of fracture toughness for deep well rock with geophysical logging data[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4):454-456. (in Chinese)
    [7] 金衍, 陈勉, 王怀英, 等. 利用测井资料预测岩石Ⅱ型断裂韧性的方法研究[J]. 岩石力学与工程学报, 2008, 27(S2):3630-3635.JIN Yan, CHEN Mian, WANG Huaiying, et al. Study on prediction method of fracture toughness of rock mode Ⅱ by logging data[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2):3630-3635. (in Chinese)
    [8] Sierra R, Tran M H, Abousleiman Y N, et al. Woodford shale mechanical properties and the impacts of lithofacies[C]//44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, June 27-30, 2010, Salt Lake City, Utah. American Rock Mechanics Association, 2010:2033-2035, ARMA-10-461.
    [9] Enderlin M, Alsleben H, Beyer J A. Predicting fracability in shale reservoirs[C]//AAPG Annual Conference and Exhibition, April 10-13, 2011, Houston, Texas, USA. AAPG, 2011:10-13.
    [10] Mayerhofer M J, Meehan D N. Waterfracs-results from 50 cotton valley Wells[C]//SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana. Society of Petroleum Engineers, 1998.
    [11] Murphy H D, Fehler M C. Hydraulic fracturing of jointed formations[C]//International Meeting on Petroleum Engineering, Beijing, China. Society of Petroleum Engineers, 1986.
    [12] Liu X Z, Vemik L, Nur A. Effects of saturating fluids on seismic velocities in shale[C]//SEG Annual Meeting, October 23-28, Los Angeles, California. Society of Exploration Geophysicists, 1994:SEG-1994-1121.
    [13] 吴建东. 清水不加砂压裂机理研究[D]. 大庆:大庆石油学院, 2009.WU Jiandong. Study on unproppant waterfrac mechanism[D]. Daqing:Daqing Petroleum Institute, 2009. (in Chinese)
    [14] 李士斌, 张立刚, 高铭泽, 等. 清水不加砂压裂增产机理及导流能力测试[J]. 石油钻采工艺, 2011, 33(6):66-69.LI Shibin, ZHANG Ligang, GAO Mingze, et al. Study on yield increase mechanism and flow conductivity test method for water-fracturing without proppant[J]. Oil Drilling & Production Technology, 2011, 33(6):66-69. (in Chinese)
    [15] 邹雨时, 张士诚, 马新仿. 页岩气藏压裂支撑裂缝的有效性评价[J]. 天然气工业, 2012, 32(9):52-55, 131-132.ZOU Yushi, ZHANG Shicheng, MA Xinfang. Assessment on the effectiveness of propped fractures in the fracturing of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(9):52-55, 131-132. (in Chinese)
    [16] Zhang J J, Kamenov A, Hill A D, et al. Laboratory measurement of hydraulic-fracture conductivities in the barnett shale[J]. SPE Production & Operations, 2014, 29(3):216-227.
    [17] Ji L J, Geehan T. Shale failure around hydraulic fractures in water fracturing of shale gas[C]//SPE Unconventional Resources Conference Canada, Calgary, Alberta, Canada. Society of Petroleum Engineers, 2013.
    [18] Economides M J, Nolte K G. Reservoir stimulation[M]. Chichester:Wiley, 2000.
    [19] 赵金洲, 彭瑀, 李勇明, 等. 层间滑移对缝高延伸影响的模拟分析[J]. 新疆石油地质, 2013, 34(6):661-664.ZHAO Jinzhou, PENG Yu, LI Yongming, et al. Modeling analysis of effect of interlayer slip on fracture height growth[J]. Xinjiang Petroleum Geology, 2013, 34(6):661-664. (in Chinese)
    [20] 许丹, 胡瑞林, 高玮, 等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发, 2015, 42(4):523-528.XU Dan, HU Ruilin, GAO Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4):523-528. (in Chinese)
    [21] Economides M J. Modern fracturing:enhancing natural gas production[M]. Houston:ET Publishing, 2007.
    [22] 赵金洲, 彭瑀, 李勇明, 等. 水力裂缝平面应变假设的适用条件与解析修正[J]. 石油勘探与开发, 2017, 44(3):423-430.ZHAO Jinzhou, PENG Yu, LI Yongming, et al. Applicable conditions and analytical corrections of plane strain assumption in the simulation of hydraulic fracturing[J]. Petroleum Exploration and Development, 2017, 44(3):423-430. (in Chinese)
    [23] 张华, 张宏, 王亚龙, 等. 管线钢平面应变断裂韧性经验模型研究[J]. 焊管, 2016, 39(8):11-15.ZHANG Hua, ZHANG Hong, WANG Yalong, et al. Study on empirical model of plane strain fracture toughness for pipeline steel[J]. Welded Pipe and Tube, 2016, 39(8):11-15. (in Chinese)
    [24] 钟建华, 刘圣鑫, 马寅生, 等. 页岩宏观破裂模式与微观破裂机理[J]. 石油勘探与开发, 2015, 42(2):242-250.ZHONG Jianhua, LIU Shengxin, MA Yinsheng, et al. Macro-fracture mode and micro-fracture mechanism of shale[J]. Petroleum Exploration and Development, 2015, 42(2):242-250. (in Chinese)
    [25] Gao Q, Tao J L, Hu J Y, et al. Laboratory study on the mechanical behaviors of an anisotropic shale rock[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(2):213-219.
    [26] 谢和平, 陈至达. 岩石断裂的微观机理分析[J]. 煤炭学报, 1989, 14(2):57-67.XIE Heping, CHEN Zhida. Analysis of rock fracture micro-mechanism[J]. Journl of China Coal Society, 1989, 14(2):57-67. (in Chinese)
    [27] Rawling G C, Baud P, Wong T F. Dilatancy, brittle strength, and anisotropy of foliated rocks:experimental deformation a nd micromechanical modeling[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B10):ETG 8-1-ETG 8-14.
    [28] Josh M, Esteban L, Delle Piane C, et al. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 2012, 88/89:107-124.
    [29] 纪国法, 李奎东, 张公社, 等. 页岩Ⅰ型断裂韧性的分形计算方法与应用[J]. 岩土力学, 2019, 40(5):1925-1931.JI Guofa, LI Kuidong, ZHANG Gongshe, et al. Fractal calculation method of model Ⅰ fracture toughness of shale rock and its application[J]. Rock and Soil Mechanics, 2019, 40(5):1925-1931. (in Chinese)
    [30] 谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究[J]. 防灾减灾工程学报, 2003, 23(4):1-9.XIE Heping, GAO Feng, ZHOU Hongwei, et al. Fractal fracture and fragmentation in rocks[J]. Journal of Seismology, 2003, 23(4):1-9. (in Chinese)
    [31] 谢和平. 分形岩石力学导论[M]. 北京:科学出版社, 1996.XIE Heping. Introduction to fractal rock mechanics[M]. Beijing:Science Press, 1996. (in Chinese)
    [32] 李世愚, 和泰名, 尹祥础. 岩石断裂力学[M]. 北京:科学出版社, 2016.LI Shiyu, HE Taiming, YIN Xiangchu. Rock fracture mechanics[M]. Beijing:Science Press, 2016. (in Chinese)
    [33] 梁亚磊. 圆盘试件预制裂缝形状对其测试岩石断裂韧度值的影响性研究[D].焦作:河南理工大学, 2011.LIANG Yalei. Research on the effect of the prefab crack shape on the rock fracture toughness tested using disc specimen[D]. Jiaozuo:Henan Polytechnic University, 2011. (in Chinese)
    [34] 张明明. T应力对岩石断裂韧性及裂纹起裂的影响[D].成都:西南石油大学, 2017.ZHANG Mingming. The influence of T-stress on rock fracture toughness and crack initial angle[D]. Chengdu:Southwest Petroleum University, 2017. (in Chinese)
    [35] dos Santos S F, de Anchieta Rodrigues J. Correlation between fracture toughness, work of fracture and fractal dimensions of Alumina-mullite-zirconia composites[J]. Materials Research, 2003, 6(2):219-226.
    [36] Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308(5961):721-722.
    [37] Odling N E. Natural fracture profiles, fractal dimension and joint roughness coefficients[J]. Rock Mechanics and Rock Engineering, 1994, 27(3):135-153.
    [38] Scavia C. The effect of scale on rock fracture toughness:a fractal approach[J]. Géotechnique, 1996, 46(4):683-693.
    [39] Borodich F M. Fractals and fractal scaling in fracture mechanics[M]//Fracture Scaling. Dordrecht:Springer Netherlands, 1999:239-259.
    [40] 周筑宝. 最小耗能原理及其应用:材料的破坏理论、本构关系理论及变分原理[M]. 北京:科学出版社, 2001.ZHOU Zhubao. The principle of minimum energy consumption and its application:material destruction theory, constitutive relationship theory and variational principle[M]. Beijing:Science Press, 2001. (in Chinese)
    [41] Lung C W. Fractals and the fracture of cracked metals[M]//Pietronero L, Tosatti E. Fractals in Physics. Elsevier, 1986:189-192.
    [42] 程传煊. 表面物理化学[M]. 北京:科学技术文献出版社, 1995.CHENG Chuanxuan. Surface physicochemical[M]. Beijing:Scientific and Technical Documents Publishing House, 1995. (in Chinese)
    [43] 弗杰尔, 霍尔特, 霍斯拉德, 等. 石油工程岩石力学[M].邓金根, 蔚宝华, 王金凤, 等译. 北京:石油工业出版社, 2012.Fjær E, Holt R M, Horsrud P, et al. Petroleum related rock mechanics[M]. DENG Jingen, WEI Baohua, WANG Jinfeng, et al. Trans. Beijing:Petroleum Industry Press, 2012. (in Chinese))
    [44] 李列列, 卓莉, 邵江, 等. 岩石巴西圆盘复合型断裂力学特征及空间效应研究[J]. 工程科学与技术, 2017, 49(S1):132-138.LI Lielie, ZHUO Li, SHAO Jiang, et al. Mechanical characteristics and spatial effect research of rocks using Brazilian disk under mixed mode loading[J]. Advanced Engineering Sciences, 2017, 49(S1):132-138. (in Chinese)
    [45] Awaji H, Sato S. Combined mode fracture toughness measurement by the disk test[J]. Journal of Engineering Materials and Technology, 1978, 100(2):175-182.
    [46] Atkinson C, Smelser R E, Sanchez J. Combined mode fracture via the cracked Brazilian disk test[J]. International Journal of Fracture, 1982, 18(4):279-291.
    [47] 陈建国, 邓金根, 袁俊亮, 等. 页岩储层Ⅰ型和Ⅱ型断裂韧性评价方法研究[J].岩石力学与工程学报, 2015, 34(6):1101-1105.CHEN Jianguo, DENG Jingen, YUAN Junliang, et al. Determination of fracture toughness of modes Ⅰ and Ⅱ of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1101-1105. (in Chinese)
    [48] 赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法[J]. 天然气地球科学, 2015, 26(6):1165-1172.ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(6):1165-1172. (in Chinese)
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

纪国法,李思辰,李奎东,李少明,刘炜,熊力坤.基于平面应变和沿晶断裂条件下剪切滑移作用的页岩可压性评价方法[J].重庆大学学报,2020,43(4):25-32.

复制
分享
文章指标
  • 点击次数:677
  • 下载次数: 1059
  • HTML阅读次数: 803
  • 引用次数: 0
历史
  • 收稿日期:2019-09-05
  • 在线发布日期: 2020-04-21
文章二维码