废弃煤矿采空区抽水蓄能水库初步可行性研究
作者:
中图分类号:

TD325.3;TV743

基金项目:

国家科技重大专项资助项目(2016ZX05045001-005)。


Preliminary feasibility analysis of abandoned coal goafs as PHES reservoirs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    近年来中国的风能太阳能发电取得了巨大的进步,装机容量跃居世界第一。由于相关配套储能设施的匮乏,造成了大量的弃风、弃光、弃电等现象。目前中国的电网储能主要依靠抽水蓄能电站。采用废弃煤矿建设抽水蓄能电站可以提高中国对风能太阳能的高效利用,同时实现废弃煤矿资源化和水资源保护。从采空区的可储空间和采空区的地下布置问题初步研究了废弃煤矿采空区抽水蓄能水库的可行性。研究发现:采空区的渗透系数越大,则越多的水可以被抽出或注入,其有效库容也越大。若是满足有效库容系数(有效库容与总库容的比值)大于0.8,则采空区的渗透系数需大于8×10-8 m2,采空区上下水库间距越小,上水库水量的漏失量也越大。

    Abstract:

    Clean energy, such as wind power and solar power, has been greatly developed in China, whose installed capacity has ranked the first in the world. However, the shortage of the matched storage facilities causes a lot of wind, solar and electricity abandonment. Pumped-hydro energy storage (PHS) plants currently dominate the energy storage market in China. Utilizing abandoned coal mine goafs as PHS reservoirs can not only enhance the efficient utilization of clean energy, but also reuse the wastes and protect the underground water resources. This paper investigates the preliminary feasibility of goafs as PHS underground reservoirs in terms of storable space and safe distance. The results show that as the permeability of goaf increases, the effective capacity of reservoirs rises. With the permeability above 8×10-8 m2, the effective coefficient(the ratio of effective capacity to total capacity) of underground goaf-reservoir can reach 0.8. A smaller horizontal distance between two reservoirs will lead to a larger leakage rate of the upper one and the acceptable distance for a typical coal mine geology is suggested.The results can provide a reference for the construction of coal mine PHES plants.

    参考文献
    [1] 周焕濠. 试析试析《巴黎协定》中的国家自主贡献模式及中国的承诺[J]. 现代农业研究, 2019(1):119-121.ZHOU Huanhao. A analysis of the model of independent contribution of the state in the Paris agreement and China's commitment[J]. Modern Agriculture Research, 2019(1):119-121. (in Chinese)
    [2] 李娜娜, 谢国辉, 李琼慧, 等. 我国新能源消纳预警分析研究[J]. 电器与能效管理技术, 2018(17):69-74.LI Nana, XIE Guohui, LI Qionghui, et al. Research on early warning analysis of new energy accommodation in China[J]. Electrical & Energy Management Technology, 2018(17):69-74. (in Chinese)
    [3] Wong I H. An underground pumped storage scheme in the Bukit Timah Granite of Singapore[J]. Tunnelling and Underground Space Technology, 1996, 11(4):485-489.
    [4] Fan J Y, Jiang D Y, Chen J, et al. Fatigue performance of ordinary concrete under discontinuous cyclic loading[J]. Construction and Building Materials, 2018, 166:974-981.
    [5] Fan J Y, Liu W, Jiang D Y, et al. Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China[J]. Energy, 2018, 157:31-44.
    [6] 毕忠伟, 丁德馨, 张新华. 地下采空区合理利用综述[J]. 地下空间与工程学报, 2005, 1(S1):1080-1083.BI Zhongwei, DING Dexin, ZHANG Xinhua. A review of the utilization of mined area[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(S1):1080-1083. (in Chinese)
    [7] 李庭, 顾大钊, 李井峰, 等. 基于废弃煤矿采空区的矿井水抽水蓄能调峰系统构建[J]. 煤炭科学技术, 2018, 46(9):93-98.LI Ting, GU Dazhao, LI Jingfeng, et al. Construction of pumped storage peak shaving system for mine water based on abandoned coal mine goaf[J]. Coal Science and Technology, 2018, 46(9):93-98. (in Chinese)
    [8] 顾大钊, 颜永国, 张勇, 等. 煤矿地下水库煤柱动力响应与稳定性分析[J]. 煤炭学报, 2016, 41(7):1589-1597.GU Dazhao, YAN Yongguo, ZHANG Yong, et al. Experimental study and numerical simulation for dynamic response of coal pillars in coal mine underground reservoir[J]. Journal of China Coal Society, 2016, 41(7):1589-1597. (in Chinese)
    [9] 谢和平, 高明忠, 高峰, 等. 关停矿井转型升级战略构想与关键技术[J]. 煤炭学报, 2017, 42(6):1355-1365.XIE Heping, GAO Mingzhong, GAO Feng, et al. Strategic conceptualization and key technology for the transformation and upgrading of shut-down coal mines[J]. Journal of China Coal Society, 2017, 42(6):1355-1365. (in Chinese)
    [10] 谢和平, 侯正猛, 高峰, 等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报, 2015, 40(5):965-972.XIE Heping, HOU Zhengmeng, GAO Feng, et al. A new technology of pumped-storage power in underground coal mine:principles, present situation and future[J]. Journal of China Coal Society, 2015, 40(5):965-972. (in Chinese)
    [11] Winde F, Kaiser F, Erasmus E. Exploring the use of deep level gold mines in South Africa for underground pumped hydroelectric energy storage schemes[J]. Renewable and Sustainable Energy Reviews, 2017, 78:668-682.
    [12] Alday J G, Zaldívar P, Torroba-Balmori P, et al. Natural forest expansion on reclaimed coal mines in Northern Spain:the role of native shrubs as suitable microsites[J]. Environmental Science and Pollution Research, 2016, 23(14):13606-13616.
    [13] 罗魁, 石文辉, 曹飞, 等. 利用废弃矿洞建设抽水蓄能电站初探[J]. 中国能源, 2018, 40(10):42-47.LUO Kui, SHI Wenhui, CAO Fei, et al. Preliminary study on construction of pumped storage power station by using abandoned mines[J]. Energy of China, 2018, 40(10):42-47. (in Chinese)
    [14] 王婷婷, 曹飞, 唐修波, 等. 利用矿洞建设抽水蓄能电站的技术可行性分析[J]. 储能科学与技术, 2019, 8(1):195-200.WANG Tingting, CAO Fei, TANG Xiubo, et al. Technical feasibility analysis of utilizing mine to construct pumped storage plant[J]. Energy Storage Science and Technology, 2019, 8(1):195-200. (in Chinese)
    [15] 黄素果, 魏艳敏. 采空区覆岩破坏规律及区带划分数值模拟研究[J]. 煤炭技术, 2015, 34(5):32-34.HUANG Suguo, WEI Yanmin. Numerical simulation research of goaf upper rock stratum failure law and zone divide[J]. Coal Technology, 2015, 34(5):32-34. (in Chinese)
    [16] 黄学满. 煤矿采场"竖三带"的确定方法及应用[J]. 煤炭科学技术, 2013, 41(S2):48-50.HUANG Xueman. Application and determination method of vertical three regions of working face[J]. Coal Science and Technology, 2013, 41(S2):48-50. (in Chinese)
    [17] 陈苏社, 黄庆享, 薛刚,等. 大柳塔煤矿地下水库建设与水资源利用技术[J]. 煤炭科学技术, 2016, 44(8):21-28.CHEN Sushe, HUANG Qingxiang, XUE Gang, et al. Technology of underground reservoir construction and water resource utilization in Daliuta coal mine[J]. Coal Science and Technology, 2016, 44(8):21-28. (in Chinese)
    [18] 龙卿吉, 张福斌. 挡水墙设计及施工应注意的几个问题[J]. 煤矿安全, 2001, 32(9):13-14, 36.LONG Qingji, ZHANG Fubin. Several issues should be noticed in the design and construction of retaining walls[J]. Safety in Coal Mines, 2001, 32(9):13-14, 36. (in Chinese)
    [19] 齐蓬勃. 煤层中挡水墙施工工艺[J]. 煤矿开采, 2008, 13(4):92-93.QI Pengbo. Construction technique of water-retaining wall in coal seam[J]. Coal Mining Technology, 2008, 13(4):92-93. (in Chinese)
    [20] 陈苏社, 鞠金峰. 大柳塔煤矿矿井水资源化利用技术[J]. 煤炭科学技术, 2011, 39(2):125-128.CHEN Sushe, JU Jinfeng. Utilization technology of mine water resources in daliutamine[J]. Coal Science and Technology, 2011, 39(2):125-128. (in Chinese)
    [21] Pujades E, Willems T, Bodeux S, et al. Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow[J]. Hydrogeology Journal, 2016, 24(6):1531-1546.
    [22] Pujades E, Jurado A, Orban P, et al. Parametric assessment of hydrochemical changes associated to underground pumped hydropower storage[J]. Science of the Total Environment, 2019, 659:599-611.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王丽,李宗泽,陈结,姜德义,杜俊生.废弃煤矿采空区抽水蓄能水库初步可行性研究[J].重庆大学学报,2020,43(4):47-54.

复制
分享
文章指标
  • 点击次数:927
  • 下载次数: 976
  • HTML阅读次数: 1199
  • 引用次数: 0
历史
  • 收稿日期:2019-11-02
  • 在线发布日期: 2020-04-21
文章二维码