基于云模型和改进CRITIC的深井垂直充填管道磨损风险评估
作者:
中图分类号:

TD803

基金项目:

国家自然科学基金(51804134,51804135);江西省自然科学基金(20181BAB216013);博士启动基金(jxxjbs17011)。


An improved CRITIC and cloud model evaluation method for predicting the wear risk of vertical filling pipes in deep well
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为准确预测深井垂直充填管道磨损程度,建立了深井垂直充填管道磨损风险评估云模型。以金川龙首矿等国内4家深井矿山为例,选取料浆体积分数等14项因素作为风险评估指标。以指标作为云模型变量,根据云模型理论,选取适当的云模型数字特征;考虑指标之间的相关性以及指标内部变异程度对指标权重的影响,引入改进CRITIC法获取指标权重,计算评估对象隶属于风险等级的综合确定度,得到深井垂直充填管道磨损风险等级。研究结果表明,金川龙首矿、冬瓜山铜矿、孙村煤矿、广西高峰矿业垂直充填管道磨损风险等级分别为Ⅱ级、Ⅲ级、Ⅳ级、Ⅲ级。与其他评估方法进行对比显示,该计算模型将模糊性与随机性转化为确定度这一定量值,实现了定性到定量的映射,为深井垂直充填管道磨损类似问题的研究提供了新方法。

    Abstract:

    To accurately predict wear degree of vertical filling pipe in deep mine, a cloud model has been established to assess the risk envolved. The paper has studied the case of four domestic enterprises, such as Longshou mining in Jinchuan. Fourteen elements, including the slurry volume fraction, were selected as risk assessment indexes. On the basis of to the cloud model theory, variable indicators were used to choose applicable digital characteristics. Taking the correlation between various indicators as well as internal variation of them into account, we introduced the improved CRITIC method to gain the index weight, and the pipeline wear risk grades were obtained by calculating the comprehensive determinacy of evaluation indicators. The results showed that the wear risk grades of vertical filling pipelines in Longshou Mine, Dongguashan Copper Mine, Suncun Mine and Gaofeng Mine in Guangxi were Ⅱ, Ⅲ, Ⅳ and Ⅲ respectively. Compared with other assessment methods, the computational model transforms ambiguity and randomness into a quantitative value of certainty, achieving a qualitative-to-quantitative mapping, providing an innovation for similar research of wear degree of vertical filling pipe in deep mine.

    参考文献
    [1] 古德生, 周科平. 现代金属矿业的发展主题[J]. 金属矿山, 2012(7):1-8.GU Desheng, ZHOU Keping. Development theme of the modern metal mining[J]. Metal Mine, 2012(7):1-8.(in Chinese)
    [2] 张钦礼, 周碧辉, 王新民, 等. 充填管道失效风险性预测精度研究[J]. 中南大学学报(自然科学版), 2014, 45(8):2805-2811.ZHANG Qinli, ZHOU Bihui, WANG Xinmin, et al. Invalidation prediction precision of filling pipeline[J]. Journal of Central South University(Science and Technology), 2014, 45(8):2805-2811.(in Chinese)
    [3] 王新民, 古德生, 张钦礼. 深井矿山充填理论与管道输送技术[M]. 长沙:中南大学出版社, 2010.WANG Xinmin, GU Desheng, ZHANG Qinli. Theory of backfilling activity and pipeline transportation technology of backfill in deep mines[M]. Changsha:Central South University Press, 2010.(in Chinese)
    [4] Hewitt D, Allard S, Radziszewski P. Pipe lining abrasion testing for paste backfill operations[J]. Minerals Engineering, 2009, 22(12):1088-1090.
    [5] Gharib N, Bharathan B, Amiri L, et al. Flow characteristics and wear prediction of Herschel-Bulkley non-Newtonian paste backfill in pipe elbows[J]. The Canadian Journal of Chemical Engineering, 2017, 95(6):1181-1191.
    [6] 冯巨恩, 吴超. 深井充填管道失效概率准则的模糊综合评判[J]. 中南大学学报(自然科学版), 2005, 36(6):1079-1083.FENG Juen, WU Chao. Fuzzy comprehensive evaluation on probability failure criteria of the deep level pipelines filling system[J]. Journal of Central South University(Science and Technology), 2005, 36(6):1079-1083.(in Chinese)
    [7] 薛希龙, 王新民, 张钦礼, 等. 充填管道磨损风险评估的组合权重与可变模糊耦合模型[J]. 中南大学学报(自然科学版), 2016, 47(11):3752-3758.XUE Xilong, WANG Xinmin, ZHANG Qinli, et al. An integrated model of combination weights and variable fuzzy on evaluating backfill pipeline wear risk[J]. Journal of Central South University(Science and Technology), 2016, 47(11):3752-3758.(in Chinese)
    [8] 李健, 汪明武, 徐鹏, 等. 基于云模型的围岩稳定性分类[J]. 岩土工程学报, 2014, 36(1):83-87.LI Jian, WANG Mingwu, XU Peng, et al. Classification of stability of surrounding rock using cloud model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):83-87.(in Chinese)
    [9] 李德毅,杜鹢. 不确定性人工智能[M]. 北京:国防工业出版社, 2014.LI Deyi,DU Yu. Artificial intelligence with uncertainty[M]. Beijing:National Defense Industry Press, 2014.(in Chinese)
    [10] 魏博文, 黄海鹏, 徐镇凯. 基于云模型和组合赋权的岩体质量二维评价模型[J]. 岩石力学与工程学报, 2016, 35(S1):3092-3099.WEI Bowen, HUANG Haipeng, XU Zhenkai. Two-dimensional evaluation model of rock mass based on combination weighting and cloud model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1):3092-3099.(in Chinese)
    [11] 过江, 张为星, 赵岩. 岩爆预测的多维云模型综合评判方法[J]. 岩石力学与工程学报, 2018, 37(5):1199-1206.GUO Jiang, ZHANG Weixing, ZHAO Yan. A multidimensional cloud model for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1199-1206.(in Chinese)
    [12] 周科平, 林允, 胡建华, 等. 基于熵权[XC半字线.TIF,JZ]正态云模型的岩爆烈度分级预测研究[J]. 岩土力学, 2016, 37(S1):596-602.ZHOU Keping, LIN Yun, HU Jianhua, et al. Grading prediction of rockburst intensity based on entropy and normal cloud model[J]. Rock and Soil Mechanics, 2016, 37(S1):596-602.(in Chinese)
    [13] 杨文东, 杨栋, 谢全敏. 基于云模型的边坡风险评估方法及其应用[J]. 华中科技大学学报(自然科学版), 2018, 46(4):30-34.YANG Wendong, YANG Dong, XIE Quanmin. Study on slope risk assessment method based on cloud model and its application[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2018, 46(4):30-34.(in Chinese)
    [14] 傅鹤林, 黄震, 黄宏伟, 等. 基于云理论的隧道结构健康诊断方法[J]. 工程科学学报, 2017, 39(5):794-801.FU Helin, HUANG Zhen, HUANG Hongwei, et al. Health diagnosis method of shield tunnel structure based on cloud theory[J]. Journal of University of Science and Technology Beijing, 2017, 39(5):794-801.(in Chinese)
    [15] 王迎超, 靖洪文, 张强, 等. 基于正态云模型的深埋地下工程岩爆烈度分级预测研究[J]. 岩土力学, 2015, 36(4):1189-1194.WANG Yingchao, JING Hongwen, ZHANG Qiang, et al. A normal cloud model-based study of grading prediction of rockburst intensity in deep underground engineering[J]. Rock and Soil Mechanics, 2015, 36(4):1189-1194.(in Chinese)
    [16] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8):28-34.LI Deyi, LIU Changyu. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 6(8):28-34.(in Chinese)
    [17] 肖卫国. 深井充填技术的研究[D]. 长沙:中南大学, 2003.XIAO Weiguo. Deep well filling technology research[D]. Changsha:Central South University, 2013.(in Chinese)
    [18] 刘志双. 充填料浆流变特性及其输送管道磨损研究[D]. 北京:中国矿业大学(北京), 2018.LIU Zhishuang. Study on rheological properties of filling slurry and wear of conveying pipeline[D]. Beijing:China University of Mining & Technology-Beijing, 2018.(in Chinese)
    [19] 毛明发, 王炳文, 朱家锐, 等. 充填料浆自流输送管道磨损机理研究[J]. 金属矿山, 2018(4):178-184.MAO Mingfa, WANG Bingwen, ZHU Jiarui, et al. Study on wear mechanism of gravity transportation pipeline for backfilling slurry[J]. Metal Mine, 2018(4):178-184.(in Chinese)
    [20] 张德明, 王新民, 郑晶晶, 等. 深井充填钻孔内管道磨损机理及成因分析[J]. 武汉理工大学学报, 2010, 32(13):100-105.ZHANG Deming, WANG Xinmin, ZHENG Jingjing, et al. Wear mechanism and causes of backfilling drill-holes pipelines in deep Mine[J]. Journal of Wuhan University of Technology, 2010, 32(13):100-105.(in Chinese)
    [21] 杨洁, 王国胤, 刘群, 等. 正态云模型研究回顾与展望[J]. 计算机学报, 2018, 41(3):724-744.YANG Jie, WANG Guoyin, LIU Qun, et al. Retrospect and prospect of research of normal cloud model[J]. Chinese Journal of Computers, 2018, 41(3):724-744.(in Chinese)
    [22] 郝杰, 侍克斌, 王显丽, 等. 基于模糊C-均值算法粗糙集理论的云模型在岩爆等级评价中的应用[J]. 岩土力学, 2016, 37(3):859-866,874.HAO Jie, SHI Kebin, WANG Xianli, et al. Application of cloud model to rating of rockburst based on rough set of FCM algorithm[J]. Rock and Soil Mechanics, 2016, 37(3):859-866,874.(in Chinese)
    [23] 宋远骏, 李德毅, 杨孝宗, 等. 电子产品可靠性的云模型评价方法[J]. 电子学报, 2000, 28(12):74-76,68.SONG Yuanjun, LI Deyi, YANG Xiaozong, et al. Reliability evaluation of electronic products based on cloud models[J]. Acta Electronica Sinics, 2000, 28(12):74-76,68.(in Chinese)
    [24] 帅青燕, 何亚伯. 基于云模型的坝基岩体质量综合评价[J]. 东南大学学报(自然科学版), 2013, 43(S1):54-58.SHUAI Qingyan, HE Yabo. Comprehensive evaluation on rock quality of dam foundation based on cloud model[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(S1):54-58.(in Chinese)
    [25] 胡嘉蕊, 吕震宙. 基于核主成分分析的多输出模型确认方法[J]. 北京航空航天大学学报, 2017, 43(7):1470-1480.HU Jiarui, LYU Zhenzhou. Model validation method with multivariate output based on kernel principal component analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7):1470-1480.(in Chinese)
    [26] 熊卫红, 张宏志, 谢志成, 等. 基于云理论及熵权法的变压器潜在故障风险评估方法[J]. 电力自动化设备, 2018, 38(8):125-130,146.XIONG Weihong, ZHANG Hongzhi, XIE Zhicheng, et al. Risk assessment of power transformer potential fault based on cloud theory and entropy weight method[J]. Electric Power Automation Equipment, 2018, 38(8):125-130,146.(in Chinese)
    [27] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems:the critic method[J]. Computers & Operations Research, 1995, 22(7):763-770.
    [28] 王瑛, 蒋晓东, 张璐. 基于改进的CRITIC法和云模型的科技奖励评价研究[J]. 湖南大学学报(自然科学版), 2014, 41(4):118-124.WANG Ying, JIANG Xiaodong, ZHANG Lu. Research on the evaluation of science and technological awards based on improved CRITIC method and cloud model[J]. Journal of Hunan University(Natural Sciences), 2014, 41(4):118-124.(in Chinese)
    [29] 张钦礼, 曹瑞锋, 王石, 等. 基于熵权和综合指数模型的充填管道堵塞风险性评价[J]. 广西大学学报(自然科学版), 2013, 38(4):1021-1025.ZHANG Qinli, CAO Ruifeng, WANG Shi, et al. Risk assessment on blocking of filling pipeline based on comprehensive index and entropy[J]. Journal of Guangxi University(Natural Science Edition), 2013, 38(4):1021-1025.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王石,宋学朋,石海天.基于云模型和改进CRITIC的深井垂直充填管道磨损风险评估[J].重庆大学学报,2020,43(4):73-84.

复制
分享
文章指标
  • 点击次数:661
  • 下载次数: 811
  • HTML阅读次数: 537
  • 引用次数: 0
历史
  • 收稿日期:2019-05-28
  • 在线发布日期: 2020-04-21
文章二维码