基于TS-KNN的室内定位算法
作者:
中图分类号:

TP391

基金项目:

重庆市科技计划项目基础科学与前沿技术研究专项重点资助项目(cstc2017jcyjBX0025)。


Indoor positioning algorithm based on TS-KNN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [6]
  • | | |
  • 文章评论
    摘要:

    室内定位是智慧城市的硬性需求,大量智慧城市相关应用都离不开位置服务。主要室内定位技术包括:蓝牙、RFID、UWB、地磁等,但由于成本、部署便捷性等问题,限制了其应用发展。笔者提出了一种基于指纹时序特征的KNN(k-nearest neighbor)定位算法(TS-KNN,timing sequence based KNN),该算法使用当前时刻的指纹进行基准坐标选择,并利用前几个时刻的定位结果对每个基准坐标进行权值修正。在重庆市某广场进行实验测试结果表明,提出的TS-KNN方法与KNN和WKNN等其他算法相比较,具有更高准确率,可有效提高室内定位精度,降低平均定位误差。

    Abstract:

    Indoor positioning is the hard demand of smart cities and many smart city-related applications are inseparable from location services. At present, the main indoor positioning technology includes Bluetooth, RFID, UWB and geomagnetic, etc., but due to such issues as cost, deployment convenience and so on, its applications development are limited. This paper proposes a KNN(K-Neatest Neighbor) localization algorithm based on fingerprint timing features (TS-KNN), which uses the fingerprint of the current moment to select the reference coordinates and the positioning results of the first few moments are used to perform weight correction for each reference coordinate. The experimental test results in a square in Chongqing show that the proposed TS-KNN method is superior to the KNN and the WKNN algorithms, since it can effectively improve the accuracy of indoor positioning and reduce the average positioning error.

    参考文献
    [1] Brack A. Reliable GPS+BDS RTK positioning with partial ambiguity resolution[J]. GPS Solutions,2017,21(3):1083-1092.
    [2] 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报,2013,1(1):3-8. NING Jinsheng, YAO Yibin, ZHANG Xiaohong. Review of the development of global satellite navigation system[J]. Journal of Navigation and Positioning,2013,1(1):3-8. (in Chinese)
    [3] 吴命. 城市高密度中心区建筑导向的城市型公共空间补偿设计研究[D]. 大连:大连理工大学,2017. WU Ming. Urban high density central building-oriented urban public space compensation design research[D]. Dalian:Dalian Jiaotong University,2017. (in Chinese)
    [4] Subbu K, Zhang C, Luo J, et al. Analysis and status quo of smartphone-based indoor localization systems[J]. IEEE Wireless Communications,2014,21(4):106-112.
    [5] Fei W, JinQiang C, Benmei C, et al. A comprehensive UAV indoor navigation system based on vision optical flow and laser fast SLAM[J]. Acta Automatica Sinica,2013(11):1889-1900.
    [6] Davidson P, Pich'e R. A survey of selected indoor Positioning methods for smartphones[J]. IEEE Communications Surveys & Tutorials,2017,19(2):1347-1370.
    [7] 桂振文, 吴侹, 彭欣. 一种融合多传感器信息的移动图像识别方法[J].自动化学报,2015,41(8):1394-1404. GUI Zhenwen, WU Ting, PENG Xin. A novel recognition approach for mobile image fusing inertial sensors[J]. Acta Automatica Sinica,2015,41(8):1394-1404. (in Chinese)
    [8] 李爽. 基于视觉的室内定位算法研究[D]. 哈尔滨:哈尔滨工程大学,2017. LI Shuang. Research on the indoor location algorithm based on vision[D]. Harbin:Harbin Engineering University,2017. (in Chinese)
    [9] Cheng G, Zhou P, Han J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(12):7405-7415.
    [10] Ismail A H, Tasaki R, Kitagawa H, et al. Optimum placement of wireless access point for mobile robot positioning in an indoor environment[J]. Journal of Robotics & Mechatronics,2016,28(2):162.
    [11] Bisio I, Lavagetto F, Marchese M, et al. Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices[J]. Pervasive and Mobile Computing,2016, 31:107-123.
    [12] 王博远, 刘学林, 蔚保国, 等. WiFi指纹定位中改进的加权k近邻算法[J]. 西安电子科技大学学报,2019(5):41-47. WANG Boyuan, LIU Xuelin, WEI Baoguo, et al. Improved weighted k-nearset neighbor algorithm for WiFi fingerprint positioning[J]. Journal of Xidian University,2019(5):41-47. (in Chinese)
    [13] 毛科禹, 陈桂兵. 室内定位技术的应用现状与发展趋势[J]. 现代测绘,2018,41(5):31-34. MAO Keyu, CHEN Guibing. The application status Quo and development trend of indoor positioning technology[J]. Modern Surveying and Mapping,2018,41(5):31-34. (in Chinese)
    [14] Hafner P, Moder T, Wisiol K, et al. Indoor positioning based on bayes filtering using map information[J]. IFAC-PapersOnLine,2015,48(10):208-214.
    [15] Ge X, Qu Z. Optimization WIFI indoor positioning KNN algorithm location-based fingerprint[C/OL]. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). New York, USA:IEEE,2016(2016-03-23)[2020-01-25]. https://doi.org/10.1109/ICSESS.2016.7883033.
    [16] 吴彦波, 孟广仕. 基于Wifi网络的模糊聚类KNN位置指纹定位算法[J]. 通讯世界,2018(6):95-96. WU Yanbo, MENG Guangshi. KNN location fingerprint positioning algorithm based on Wifi network fuzzy clustering[J]. Telecom World,2018(6):95-96. (in Chinese)
    [17] 石欣, 印爱民, 张琦. 基于K最近邻分类的无线传感器网络定位算法[J].仪器仪表学报,2014,35(10):2238-2247. SHI Yin, YIN Aimin, ZHANG Qi. Localization in wireless sensor networks based on K-Nearest neighbor[J]. Chinese Journal of Scientific Instrument,2014,35(10):2238-2247. (in Chinese)
    [18] 陈空, 宋春雷, 陈家斌, 等. 基于改进WKNN的位置指纹室内定位算法[J].导航定位与授时,2016,3(4):58-64. CHEN Kong, SONG Chunlei, CHEN Jiabin, et al. An indoor location fingerprint algorithm based on improved WKNN[J]. Navigation Positioning and Timing,2016,3(4):58-64. (in Chinese)
    [19] Wu C, Yang Z, Xiao C. Automatic radio map adaptation for indoor localization using smartphones[J]. IEEE Transactions on Mobile Computing,2018,17(3):517-528.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田泽越,余星,黄剑.基于TS-KNN的室内定位算法[J].重庆大学学报,2020,43(5):93-103.

复制
分享
文章指标
  • 点击次数:629
  • 下载次数: 1006
  • HTML阅读次数: 1205
  • 引用次数: 0
历史
  • 收稿日期:2020-01-12
  • 在线发布日期: 2020-05-25
文章二维码