基于扩展集员估计的气体源定位方法
作者:
中图分类号:

TP273


Gas source location method based on extended set estimator
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种基于扩展集员滤波框架的室内气体源分布式定位方法。相对于基于随机模型的统计估计方法(扩展卡尔曼滤波和无迹卡尔曼滤波),此方法只需要知道未知噪声的边界,不考虑噪声的随机性。利用静态湍流模型迭代计算定位误差边界,将位置状态真实值有效地包含在估计范围内,从而能达到的定位可信度。同时引入最小二乘法进行初步定位,以克服扩展集员滤波的初始点选取问题。最后通过基于无线电子鼻的室内定位仿真实验,证明算法的可行性和有效性。

    Abstract:

    This paper presents a distributed location method for indoor gas source based on extended set-membership filtering. Compared with the statistical estimation method based on stochastic model (extened Kalman filter and unscented Kalman filter), this kind of method only needs to know the boundary of the unknown noise, regardless of the randomness of the noise. The static turbulence model is utilized to calculate iteratively the positioning error boundary, and the actual value of the position state is effectively included in the estimation range, so that the positioning credibility can be achieved. Meanwhile, the least squares method is introduced to carry out the initial positioning to overcome the problem of initial point selection of the extended set membership filtering. Finally, indoor positioning simulation experiment based on the wireless electronic nose is conducted and the feasibility and validity of the proposed method are verified.

    参考文献
    [1] Jatmiko W, Sekiyama K, Fukuda T. A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment:theory, simulation and measurement[J]. IEEE Computational Intelligence Magazine,2007,2(2):37-51.
    [2] Tianlu F. Indoor odour source localisation using robot:Initial location and surge distance matter?[J]. Robotics and Autonomous Systems,2013,61(6):637-647.
    [3] Kuang X H, Shao H H. Study of plume source localization based on WSN[J]. Journal of System Simulation,2019, 19(7):1464-1467.
    [4] 吴玉秀, 孟庆浩, 曾明. 基于移动传感器网络的气体源定位[J].天津大学学报,2015,48(2):139-146.WU Yuxiu, MENG Qinghao, ZENG Ming. Gas source localization based on mobile sensor network[J]. Journal of Tianjin University,2015,48(2):139-146. (in Chinese)
    [5] Wang S, Yi C, Yang Z. Gas source localization based on maximum likelihood with arbitrary deployment WSN[C/OL]. Proceedings of the 33rd Chinese Control Conference. New York, USA:IEEE,2014(2014-09-15)[2020-01-25].https://doi.org/10.1109/ChiCC.2014.6896647
    [6] 匡兴红, 邵惠鹤. 无线传感器网络在气体源预估定位中的应用[J]. 华东理工大学学报:自然科学版,2006,32(7):780-783.KUANG Xinghong, SHAO Huihe. Application of sensor networks in plume source position estimation[J]. Journal of East China University of Science and Technology (Natural Science Edition),2006,32(7):780-783. (in Chinese)
    [7] Sun C J, Kuo H Y, Lin C E. A sensor based indoor mobile localization and navigation using Unscented Kalman Filter[C/OL]. IEEE/ION Position, Location and Navigation Symposium. New York, USA:IEEE,2010(2010-07-08)[2020-01-25].https://doi.org/10.1109/PLANS.2010.5507249
    [8] Zhang F, Huang L, Yuan S, et al. A novel strategy of localization based on EKF for mobile robot[C/OL]. Proceedings of the 33rd Chinese Control Conference. New York, USA:IEEE, 2014(2014-09-15)[2020-01-25]. https://doi.org/10.1109/ChiCC.2014.6896644
    [9] 张勇, 张立毅, 孟广超, 等. 分簇传感网络分布式粒子滤波气体释放源定位算法[J]. 传感技术学报,2016,29(8):1239-1246.ZHANG Yong, ZHANG Liyi, MENG Guangchao, et al. Diffusive source localization algorithm based on decentralized particle filter in cluster sensor networks[J]. Chinese Journal of Sensors and Actuators,2016,29(8):1239-1246. (in Chinese)
    [10] 匡兴红, 邵惠鹤. 无线传感器网络中基于贝叶斯技术的气体源定位研究[J].兵工学报,2008, 29(12):1474-1478.KUANG Xinghong, SHAO Huihe. Plume source localization based on Bayes using wireless sensor network[J]. Acta Armamentarii,2008,29(12):1474-1478. (in Chinese)
    [11] Scholte E, Campbell M E. A nonlinear set-membership filter for on-line applications[J]. International Journal of Robust & Nonlinear Control,2003,13(15):1337-1358.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陆轶,石华云.基于扩展集员估计的气体源定位方法[J].重庆大学学报,2020,43(5):104-113.

复制
分享
文章指标
  • 点击次数:481
  • 下载次数: 898
  • HTML阅读次数: 752
  • 引用次数: 0
历史
  • 收稿日期:2019-12-10
  • 在线发布日期: 2020-05-25
文章二维码