最优风险资产组合中的数学模型及其推导
作者:
中图分类号:

F830

基金项目:

重庆大学重点课程建设资助项目(201805054)。


Mathematical model and its derivation in optimal risk portfolio
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    现代证券投资理论与方法中,最优风险资产组合是最重要的核心概念之一,而现有文献对这一理论及其相关结论缺乏严谨的数学表达。针对这一问题,将研究证券组合选择中最优风险资产组合概念形成过程中的数学机理进行严格的逻辑推演与数学建模分析。首先利用数学分析的方法构建对应关系,即将证券组合的风险、收益与平面坐标系的数对建立一一对应关系,并利用代学方法在这些数对中定义一个序关系。再从解析几何的角度,利用二维平面中二次曲线的相关性质,通过分析二次曲线簇的交点坐标,构建符合资产组合理论相关条件的数学方程组,然后进行数学推导与求解。最后通过分析二元证券组合的投资机会集的数学模型,确定了二元证券组合中的最优风险资产组合的数学表达式,并以此方法推广到了多元证券组合的情形。

    Abstract:

    In modern securities investment theories and methods, the optimal risk portfolio is one of the most important core concepts, but the existing literature lacks rigorous mathematical expression for this theory and its related conclusions. In order to solve this problem, we have studied the mathematical mechanism related to the formation of the concept of the optimal risk portfolio in portfolio selection and made strict logical deduction and mathematical modeling analysis. First of all, the mathematical analysis method was used to construct the corresponding relationship, that is, to establish one-to-one correspondence between the risk, the return of portfolio and the number pairs of plane coordinate system, and the algebraic method was employed to define an order relationship among these number pairs. From the perspective of analytic geometry and through the analysis of the intersection coordinates of quadric clusters, the mathematical equations that meet the relevant conditions of portfolio theory were constructed on the basis of the relevant properties of conic in two-dimensional plane, and then mathematical derivation and solution were carried out. Finally, by analyzing the mathematical model of the investment opportunity set of the binary portfolio, the mathematical expression of the optimal risk portfolio in the binary portfolio was determined. And this method can be extended to the case of multiple portfolio.

    参考文献
    [1] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(3):77-91.
    [2] Sharpe W F. Capital asset prices:A theory of market equilibrium under conditions of risk[J]. The Journal of Finance, 1964, 19(3):425-442.
    [3] Ross S A. The arbitrage theory of capital asset pricing[J]. Journal of Economic Theory, 1976, 13(3):341-360.
    [4] Malkiel B G, Fama E F. Efficient capital markets:A review of theory and empirical work[J]. The Journal of Finance, 1970, 25(2):383-417.
    [5] Fama E F, French K R. A five-factor asset pricing model[J]. Journal of Financial Economics, 2015, 116(1):1-22.
    [6] Daniel K, Amos T. Prospect theory:An analysis of decision under risk[J]. Econometrica, 1979, 47(2):363-391.
    [7] 张鹏, 张卫国, 张逸菲. 具有最小交易量限制的多阶段均值-半方差投资组合优化[J].中国管理科学, 2016(7):11-17.ZHANG Peng, ZHANG Weiguo, ZHANG Yifei. Multi stage mean semi variance portfolio optimization with minimum trading volume constraints[J]. China Management Science, 2016(7):11-17. (in Chinese)
    [8] 金秀, 王佳, 高莹. 基于动态损失厌恶投资组合模型的最优资产配置与实证研究[J]. 中国管理科学, 2014(5):16-23.JIN Xiu, WANG Jia, GAO Ying. Optimal asset allocation and empirical research based on dynamic loss aversion portfolio model[J]. China Management Science, 2014(5):16-23. (in Chinese)
    [9] 赵玉梅, 鲍宏伟, 孙西超. 含交易费用的证券组合投资模型的满意解[J].大学数学, 2010(4):21-25.ZHAO Yumei, BAO Hongwei, SUN Xichao. Satisfactory solution of portfolio investment model with transaction cost[J]. University Mathematics, 2010(4):21-25. (in Chinese)
    [10] 路应金,唐小我,周宗放. 证券组合投资的区间数线性规划方法[J]. 系统工程学报, 2004(1):33-37.LU Yingjin, TANG Xiaowo, ZHOU Zongfang. Interval number linear programming method for portfolio investment[J]. Journal of systems engineering, 2004(1):33-37. (in Chinese)
    [11] Liu Y J, Zhang W G, Zhang P. A multi-period portfolio selection optimization model by using interval analysis[J]. Economic Modelling, 2013(3):113-119.
    [12] Ji X D, Zhu S S. The convergence of set-valued scenario approach for downside risk minimization[J]. Journal of Systems Science and Complexity, 2016(3):722-735.
    [13] Daehwan K. Beta vs. characteristics:Comparison of risk model performances[J]. Journal of Empirical Finance, 2015(10):156-171.
    [14] Zvi B, Alex K, Alan J. 投资学[M]. 9th. 汪昌云, 等译. 北京:机械工业出版社, 2013.Zvi B, Alex K, Alan J. Investment[M]. 9th. Translated by Wang Changyun, et al. Beijing:China Machine Press, 2013. (in Chinese)
    [15] Robert C M. 连续时间金融[M]. 郭多祚, 等译. 北京:中国人民大学出版社, 2005.Robert C M. Continuous time finance[M]. Translated by Guo Duozuo, et al. Beijing:China Renmin University Press, 2005. (in Chinese)
    [16] James L F, Walter J R. 投资组合管理理论及应用[M]. 2nd. 齐寅峰, 等译. 北京:机械工业出版社, 2001.James L F, Walter J R. Theory and application of portfolio management[M]. 2nd. Translated by Qi Yinfeng, et al. Beijing:China Machine Press, 2001. (in Chinese)
    [17] Charles P J. 投资学分析与管理[M]. 10th. 李月平, 等译. 北京:机械工业出版社, 2008.Charles P J. Investment analysis and management[M]. 10th. Translated by Li Yueping, et al. Beijing:China Machine Press, 2008. (in Chinese)
    [18] Frank K R, Edgar A N.投资学[M]. 6th. 李月平, 等译. 北京:机械工业出版社, 2005.Frank K R, Edgar A N. Investment[M]. 6th. Translated by Li Yueping, et al. Beijing:China Machine Press, 2005. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周孝华,李春红,黄钢.最优风险资产组合中的数学模型及其推导[J].重庆大学学报,2020,43(5):114-120.

复制
分享
文章指标
  • 点击次数:1129
  • 下载次数: 1496
  • HTML阅读次数: 817
  • 引用次数: 0
历史
  • 收稿日期:2020-01-13
  • 在线发布日期: 2020-05-25
文章二维码