基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析
作者:
中图分类号:

O353

基金项目:

航空科学基金资助项目(20152365002,20132365002)。


Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对飞机水上迫降数值分析而言,结构与流体耦合作用方式是水上迫降研究的核心问题,在一定程度上决定了数值分析的成败。一种基于结构化任意拉格朗日-欧拉算法(S-ALE)的耦合方法用于刻画水上迫降过程中的飞机与水的相互作用。采用S-ALE流固耦合方法开展了飞机水上迫降动力学分析,提取飞机的俯仰姿态和过载的变化规律,并与传统的ALE罚函数耦合方法以及相关实验结果进行对比。结果显示:相对于传统的ALE罚函数耦合方法,S-ALE流固耦合方法较好地避免了流体的渗漏,能够有效预测飞机的二次抬头现象。与实验对比,S-ALE流固耦合方法所预测到的俯仰姿态角和过载曲线与实验数据基本吻合。

    Abstract:

    For the numerical analysis of aircraft dynamic behavior in ditching, how to define the coupling effect between fluid and structure is the key problem, which determines the success or failure of the numerical analysis to some extent. A coupling method based on structural-arbitrary Lagrangian-Euler algorithm (S-ALE) was used to characterize the interaction between the aircraft and the water during the ditching. S-ALE fluid-structure interaction method was adopted to analyze the dynamical behavior of aircraft in ditching to extract the history of aircraft pitch attitude and overload, and the results were compared with those obtained by the traditional ALE penalty-based coupling method and experiments. It is shown that the S-ALE fluid-structure interaction method can prevent the fluid leakage and effectively predict the phenomenon of aircraft secondary rise, and the pitch attitude angle and overload curve predicted by the S-ALE fluid-structure interaction method are basically consistent with the experimental data.

    参考文献
    [1] 中国民用航空局.中国民用航空规章第25部运输类飞机适航标准:CCAR-25-R4[S].北京:中国民用航空局,2011.Civil Aviation Administration of China. China civil aviation regulations Part 25:airworthiness standards of transport category aircraft:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011. (in Chinese).
    [2] Nathalie T. Contribution to the modelling and simulation of aircraft structures impacting on water[D]. Stuttgart:University of Stuttgart, 2009.
    [3] Hughes K. Application of improved Lagrangian techniques for helicopter crashworthiness on water[D]. Bedfordshire, England:Granfield University, 2005.
    [4] Pentecôte N, Vigliotti A. Simulation of the impact on water ofa subfloor component and a full-scale WG30 helicopter[C/OL]//AHS International 58th Annual Forum, June 11-13, 2002, Montreal, Canada. The American Helicopter Society International Inc.,2002[2019-12-06]. https://elib.dlr.de/14972/.
    [5] Duan X P, Sun W P, Chen C, et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology, 2019, 84:980-994.
    [6] 屈秋林, 刘沛清, 郭保东, 等. 某型客机水上迫降的着水冲击力学性能数值研究[J]. 民用飞机设计与研究, 2009(S1):64-69.QU Qiulin, LIU Peiqing, GUO Baodong, et al. Numerical study on mechanical peoperties of civil aircrafts during the ditching[J]. Civil Aircraft Design and Research, 2009(S1):64-69. (in Chinese)
    [7] Qu Q L, Hu M X, Guo H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5):1550-1558.
    [8] Qu Q L, Liu C S, Liu P Q, et al. Numerical simulation of water-landing performance of a regional aircraft[J]. Journal of Aircraft, 2016, 53(6):1680-1689.
    [9] Iranmanesh A, Passandideh-Fard M. A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique[J]. Ocean Engineering, 2017, 130:557-566.
    [10] Borrelli R, Mercurio U, Alguadich S. Water impact tests and simulations of a steel structure[J]. International Journal of Structural Integrity, 2012, 3(1):5-21.
    [11] 卢鸣飞, 华诚. 基于FEM-SPH耦合算法的飞机水上迫降的力学建模与分析[J]. 复旦学报(自然科学版), 2013, 52(5):583-591.LU Mingfei, HUA Cheng. Model and numerical simulations of water ditching by FEM-SPH coupling method[J]. Journal of Fudan University (Natural Science), 2013, 52(5):583-591. (in Chinese)
    [12] Streckwall H, Lindenau O, Bensch L. Aircraft ditching:a free surface/free motion problem[J]. Archives of Civil and Mechanical Engineering, 2007, 7(3):177-190.
    [13] Meringolo D D, Colagrossi A, Marrone S, et al. On the filtering of acoustic components in weakly-compressible SPH simulations[J]. Journal of Fluids and Structures, 2017, 70:1-23.
    [14] Xiao T H, Qin N, Lu Z Y, et al. Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations[J]. Aerospace Science and Technology, 2017, 66:28-43.
    [15] Woodgate M A, Barakos G N, Scrase N, et al. Simulation of helicopter ditching using smoothed particle hydrodynamics[J]. Aerospace Science and Technology, 2019, 85:277-292.
    [16] Siemann M H, Schwinn D B, Scherer J, et al. Advances in numerical ditching simulation of flexible aircraft models[J]. International Journal of Crashworthiness, 2018, 23(2):236-251.
    [17] Derakhshanian M S, Haghdel M, Alishahi M M, et al. Experimental and numerical investigation for a reliable simulation tool for oblique water entry problems[J]. Ocean Engineering, 2018, 160:231-243.
    [18] Hua C, Fang C, Cheng J. Simulation of fluid-solid interaction on water ditching of an airplane by ALE method[J]. Journal of Hydrodynamics, 2011, 23(5):637-642.
    [19] Wang Y H. Numerical modeling approach of an air-launched AUV initially impacting on water[C]//Proceedings of 2012 National Conference on Information Technology and Computer Science, November 16-18, 2012. Paris:Atlantis Press, 2012:336-340.
    [20] 胡大勇, 杨嘉陵, 王赞平, 等. 某型飞机水上迫降数值化模型[J]. 北京航空航天大学学报, 2008, 34(12):1369-1374, 1383.HU Dayong, YANG Jialing, WANG Zanping, et al. Numerical model for a commercial aircraft water landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(12):1369-1374, 1383. (in Chinese)
    [21] Siemann M H, Langrand B. Coupled fluid-structure computational methods for aircraft ditching simulations:comparison of ALE-FE and SPH-FE approaches[J]. Computers & Structures, 2017, 188:95-108.
    [22] Bisagni C, Pigazzini M S. Modelling strategies for numerical simulation of aircraft ditching[J]. International Journal of Crashworthiness, 2018, 23(4):377-394.
    [23] 刘翔. 飞机水上迫降的运动特性分析和讨论[D]. 武汉:武汉理工大学, 2012.LIU Xiang. Analysis and discussion on hydrodynamic characteristics of aircraft during ditching[D]. Wuhan:Wuhan University of Technology, 2012. (in Chinese)
    [24] 张苏. 水上迫降尾部吸能对飞机运动特性的影响[D]. 武汉:武汉理工大学, 2013.ZHANG Su. Effect of energy absorption of tail structure on the kinetic behavior during aricraft ditching[D]. Wuhan:Wuhan University of Technology, 2013. (in Chinese)
    [25] Anghileri M, Castelletti L M L, Francesconi E, et al. Survey of numerical approaches to analyse the behavior of a composite skin panel during a water impact[J]. International Journal of Impact Engineering, 2014, 63:43-51.
    [26] Peskin C S. The immersed boundary method[J]. Acta Numerica, 2002, 11:479-517.
    [27] Hughes K, Vignjevic R, Campbell J, et al. From aerospace to offshore:bridging the numerical simulation gaps - simulation advancements for fluid structure interaction problems[J]. International Journal of Impact Engineering, 2013, 61:48-63.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王明振,曹东风,吴彬,胡海晓,安泽君,袁志丹.基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J].重庆大学学报,2020,43(6):21-29.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-05
  • 在线发布日期: 2020-06-06
文章二维码