基于布谷鸟搜索算法的弹性力学边界条件识别
作者:
中图分类号:

O343

基金项目:

国家自然科学基金资助项目(11672098)。


Identification of elasticity boundary conditions based on cuckoo search algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    二维弹性力学Cauchy边界条件反问题的可进入测量部分边界上的全部面力和位移边界条件均已知,难进入测量部分边界上的所有边界条件需要求解。基于边界元方法,采用多项式函数近似未知的面力边界条件,将该反演问题转化为多项式系数识别问题。目标函数定义为已知边界上面力的计算值和给定值之间的最小二乘误差,利用布谷鸟算法最小化目标函数,实现对待求边界上面力边界条件的数值反演。未知位移由反演得到的面力结合其他已知边界条件代入正问题中求解得到。比较了未采用多项式和采用多项式近似的计算结果,并分别讨论了鸟巢数量、多项式阶数及测量误差对数值反演的影响。数值算例验证了布谷鸟算法联合多项式近似可准确有效地求解弹性力学Cauchy边界条件反问题。

    Abstract:

    For Cauchy boundary condition inverse problems in 2-D elasticity, all the boundary conditions on accessible part of the boundary are known,and the boundary conditions on the rest inaccessible part of the boundary need to be solved. In this paper, based on the boundary element method, and with a polynomial function to approximate the unknown traction boundary conditions, the inverse problem was transformed into a problem with the identification of unknown coefficients of the polynomial. The objective function was defined as the least square error between the calculated values and the given values of the tractions on the measurable part of the boundary. The unknown tractions on the immeasurable boundary were recognized by minimizing the objective function through the cuckoo search (CS) algorithm. Then, the unknown boundary displacements were obtained by solving the direct problem with the inversed tractions and the other known conditions. The calculation results with and without using polynomial approximation were compared, and the influences of nest number, polynomial order and measurement noise on the numerical inversion were also discussed. Numerical examples verify that the CS algorithm combined with polynomial approximation can accurately and effectively solve the Cauchy problem in elasticity.

    参考文献
    [1] 姜弘道. 弹性力学问题的边界元法[M]. 北京:中国水利水电出版社, 2008.JIANG Hongdao. Boundary element method for elasticity problems[M]. Beijing:China Water Power Press, 2008. (in Chinese)
    [2] Marin L, Hào D N, Lesnic D. Conjugate gradient-boundary element method for the Cauchy problem in elasticity[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 2002, 55(2):227-247.
    [3] Li P W, Fu Z J, Gu Y, et al. The generalized finite difference method for the inverse Cauchy problem in two-dimensional isotropic linear elasticity[J]. International Journal of Solids and Structures, 2019, 174/175:69-84.
    [4] El Seblani Y, Shivanian E. Boundary value identification of inverse Cauchy problems in arbitrary plane domain through meshless radial point Hermite interpolation[J/OL]. Engineering with Computers, 2019-04-29[2019-12-05]. https://doi.org/10.1007/s00366-019-00755-8.
    [5] Marin L, Delvare F, Cimetière A. Fading regularization MFS algorithm for inverse boundary value problems in two-dimensional linear elasticity[J]. International Journal of Solids and Structures, 2016, 78/79:9-20.
    [6] Grigor'ev Y. An analytical method for the inverse Cauchy problem of Lame equation in a rectangle[J/OL]. Journal of Physics:Conference Series, 2018, 991:012029[2019-12-05]. https://iopscience.iop.org/article/10.1088/1742-6596/991/1/012029/pdf.DOI:10.1088/1742-6596/991/1/012029.
    [7] Yang F, Fu C L, Li X X. A modified Tikhonov regularization method for the cauchy problem of Laplace equation[J]. Acta Mathematica Scientia, 2015, 35(6):1339-1348.
    [8] Liu C S, Wang F J, Gu Y. A Trefftz/MFS mixed-type method to solve the Cauchy problem of the Laplace equation[J]. Applied Mathematics Letters, 2019, 87:87-92.
    [9] Wang F J, Fan C M, Hua Q S, et al. Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations[J]. Applied Mathematics and Computation, 2020, 364:124658.
    [10] 周焕林, 江伟, 胡豪, 等. 二维弹性力学边界条件反识别TSVD正则化法[J]. 合肥工业大学学报(自然科学版), 2013, 36(9):1076-1081.ZHOU Huanlin, JIANG Wei, HU Hao, et al. Inverse identification of 2-D elasticity boundary conditions by using TSVD regularization method[J]. Journal of Hefei University of Technology(Natural Science), 2013, 36(9):1076-1081. (in Chinese)
    [11] Khodadad M, Ardakani M D. Inclusion identification by inverse application of boundary element method, genetic algorithm and conjugate gradient method[J]. American Journal of Applied Sciences, 2008, 5(9):1158-1166.
    [12] Tian N, Zhu L C, Lai C H. Identification of boundary shape using a hybrid approach[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(3):385-397.
    [13] Yang X S, Deb S. Cuckoo search via lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), December 9-11, 2009, Coimbatore, India. IEEE, 2009:210-214.
    [14] 严俊, 周焕林, 余波, 等. 基于改进布谷鸟算法的导热系数反演[J]. 合肥工业大学学报(自然科学版), 2018, 41(12):1667-1671, 1677.YAN Jun, ZHOU Huanlin, YU Bo, et al. Inversion of thermal conductivity based on improved cuckoo search algorithm[J]. Journal of Hefei University of Technology(Natural Science), 2018, 41(12):1667-1671, 1677. (in Chinese)
    [15] Naumann D S, Evans B, Walton S, et al. A novel implementation of computational aerodynamic shape optimisation using modified cuckoo search[J]. Applied Mathematical Modelling, 2016, 40(7/8):4543-4559.
    [16] Kaveh A, Bakhshpoori T, Azimi M. Seismic optimal design of 3D steel frames using cuckoo search algorithm[J]. The Structural Design of Tall and Special Buildings, 2015, 24(3):210-227.
    [17] Walton S, Hassan O, Morgan K. Selected engineering applications of gradient free optimisation using cuckoo search and proper orthogonal decomposition[J]. Archives of Computational Methods in Engineering, 2013, 20(2):123-154.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴秀壮,周焕林,陈豪龙.基于布谷鸟搜索算法的弹性力学边界条件识别[J].重庆大学学报,2020,43(6):40-49.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-05
  • 在线发布日期: 2020-06-06
文章二维码