基于水气两相流的水布垭电站泄洪雾化有限元分析
作者:
中图分类号:

TV131

基金项目:

国家重点研发计划(2017YFC1501100);国家自然科学基金(51279090,51679129);三峡大学学位论文培优资助(2019BSPY001)。


Finite element analysis on the flood discharge atomization of Shuibuya Hydropower Station based on water-air two-phase flow
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    泄洪雾化实际上是水气两相流体混合运动的过程。笔者从描述流体运动的质量守恒以及动量守恒方程出发,建立描述泄洪雾化的数学模型,采用有限元法求解模型。求解过程中采取了相应的非线性项求解策略,解决了求解过程中的数值收敛性与稳定性问题。通过与传统的方腔驱动流动算例进行对比,验证了模型的正确性。根据水布垭电站溢洪道及河谷地形地貌建立了三维有限元计算网格,并对其泄洪过程进行了数值模拟,通过与泄洪实测数据对比发现,该数值方法对泄洪雾化过程中的风场、雨场具有较强的预测能力。

    Abstract:

    Flood discharge atomization is actually a process of mixed motion of water and air two-phase fluids. Based on the mass and momentum conservation equations, the mathematical model of flood discharge atomization was established and solved by the finite element method. A non-linear solution strategy was adopted, which solved the problems of numerical convergence and stability in the solution process. The correctness of the model was verified by comparing the result with that of the square cavity driven flow case. According to the spillways of the Shuibuya Hydropower Station and the topography of the valley, a three-dimensional finite element calculation grid was established, and the flood discharge process was simulated. The consistency of the calculated data with the actual flood discharge data verifies that the numerical method has good prediction ability for the wind and rain fields in the process of flood discharge atomization.

    参考文献
    [1] 练继建, 刘丹, 刘昉. 中国高坝枢纽泄洪雾化研究进展与前沿[J]. 水利水电快报, 2019, 40(5):5.LIAN Jijian, LIU Dan, LIU Fang. Research progress and frontiers on flood discharge atomization of Chinese high dam projects[J]. Express Water Resources & Hydropower Information, 2019, 40(5):5.(in Chinese)
    [2] Lian J J, Li C Y, Liu F, et al. A prediction method of flood discharge atomization for high dams[J]. Journal of Hydraulic Research, 2014, 52(2):274-282.
    [3] Liu S H, Sun X F, Luo J. Unified model for splash droplets and suspended mist of atomized flow[J]. Journal of Hydrodynamics, 2008, 20(1):125-130.
    [4] 庞博慧, 马洪琪. 高海拔地区气压环境对高速水流水舌挑距的影响[J]. 水力发电学报, 2018, 37(2):88-95. PANG Bohui, MA Hongqi. Influence of low atmospheric pressure on trajectory distance of high velocity jet nappes at high altitude[J]. Journal of Hydroelectric Engineering, 2018, 37(2):88-95.(in Chinese)
    [5] Lu S Q, Xu M. Stability analysis of engineering slope under flood discharging atomization rain[C]//2010 International Symposium on Multi-Field Coupling Theory of Rock and Soil Media and Its Applications. Sydney:Orient Academic Forum, 2010:640-645.
    [6] 张华. 水电站泄洪雾化理论及其数学模型的研究[D]. 天津:天津大学, 2003. ZHANG Hua. Study on the theory of flood discharging atomization and it's mathematic model in hydropower station[D]. Tianjin:Tianjin University, 2003.(in Chinese)
    [7] 刘宣烈, 安刚, 姚仲达. 泄洪雾化机理和影响范围的探讨[J]. 天津大学学报, 1991, 24(S1):30-36. LIU Xuanlie, AN Gang, YAO Zhongda. The investination on the mechanism and sphere of influence of atomization by discharge flow[J]. Journal of Tianjin University, 1991, 24(S1):30-36.(in Chinese)
    [8] 陈惠玲, 李定方, 黄颖蕾. 泄洪雾化的雨和雾研究[C]//第十六届全国水动力学研讨会.上海:《水动力学研究与进展》杂志社,2002:209-220. CHEN Huiling, LI Dingfang. Study on the rainfall and fog in the flood discharge atomization[C]//The 16th National Symposium on Hydrodynamics. Shanghai:Editorial Office of Chinese Journal of Hydrodynamics, 2002:209-220. (in Chinese)
    [9] Liu S. Study of the atomized flow in hydraulic engineering[J]. Journal of Hydrodynamics (Serial B), 1999, 11(2):77-83.
    [10] 秦蕊, 朱燕梅, 田健秋, 等. 高坝泄洪雾化研究进展及雾化雨对边坡的稳定影响分析[J]. 中国农村水利水电, 2015(9):153-156. QIN Rui, ZHU Yanmei, TIAN Jianqiu, et al. Research progress of high dam flood discharge atomization and analysis of influence of atomization rain on slope stability[J]. China Rural Water and Hydropower, 2015(9):153-156.(in Chinese)
    [11] 姚克烨, 曲景学. 挑流泄洪雾化机理与分区研究综述[J]. 东北水利水电, 2007, 25(4):7-9, 71. YAO Keye, QU Jingxue. Summarization of trajectory flood discharging atomization mechanism and subzone study[J]. Water Resources & Hydropower of Northeast China, 2007, 25(4):7-9, 71.(in Chinese)
    [12] Liu H T, Liu Z P, Xia Q F, et al. Computational model of flood discharge splash in large hydropower stations[J]. Journal of Hydraulic Research, 2015, 53(5):576-587.
    [13] Duan H D, Liu S H, Luo Q S, et al. Rain intensity distribution in the splash region of atomized flow[J]. Journal of Hydrodynamics, 2006, 18(3):362-366.
    [14] 梁在潮. 雾化水流计算模式[J]. 水动力学研究与进展(A辑), 1992, 7(3):247-255. LIANG Zaichao. A computation model for atomization flow[J]. Journal of Hydrodynamics (Serial A), 1992, 7(3):247-255.(in Chinese)
    [15] 吴修锋, 吴时强, 周辉, 等. 湾塘水电站泄洪雾化原型观测[J]. 水利水运工程学报, 2001(4):71-74. WU Xiufeng, WU Shiqiang, ZHOU Hui, et al. Atomization measurement for Wantang Hydroplant[J]. Hydro-Science and Engineering, 2001(4):71-74.(in Chinese)
    [16] 陈端, 金峰, 李静. 高坝泄洪雾化降雨强度模型律研究[J]. 水利水电技术, 2005, 36(10):47-49. CHEN Duan, JIN Feng, LI Jing. Study on model law for intensity of rainfall from atomization of flood-discharging flow for high dam[J]. Water Resources and Hydropower Engineering, 2005, 36(10):47-49.(in Chinese)
    [17] 陈端, 金峰, 张鹤. 构皮滩工程大坝泄洪雾化物理模型试验研究[J]. 湖北水力发电, 2007(3):48-51. CHEN Duan, JIN Feng, ZHANG He. Physical model test for flood discharge atomization of Goupitan Hydropower Project[J]. Hubei Water Power, 2007(3):48-51.(in Chinese)
    [18] 吴时强, 吴修锋, 周辉, 等. 底流消能方式水电站泄洪雾化模型试验研究[J]. 水科学进展, 2008, 19(1):84-88. WU Shiqiang, WU Xiufeng, ZHOU Hui, et al. Model experiment study of effect of discharge atomization for energy dissipation by hydraulic jump[J]. Advances in Water Science, 2008, 19(1):84-88.(in Chinese)
    [19] Falvey H T. Air-water flow in hydraulic structures:engineering monograph No. 41[R].Denver:Water and Power Resources Service, 1980.
    [20] Zhou H,Wu S,Chen H, et al. Similarity criterion of flood discharge atomization[J]. Water Science and Engineering, 2008, 1(2):59-65.
    [21] 张华, 练继建. 应用水滴随机喷溅数学模型预测挑流泄洪雾化的雨强分布[J].三峡大学学报(自然科学版), 2004, 26(3):210-213. ZHANG Hua, LIAN Jijian. Application of mathematic model of water drops random spattering to prediction ofrainfall intensity distribution in deflecting flood release and atomization[J]. Journal of China Three Gorges University(Natural Sciences), 2004, 26(3):210-213.(in Chinese)
    [22] 曾理, 路前平, 魏艳婷, 等. 加纳布维水电站泄洪雾化降雨强度模糊综合评判预报[J]. 西北水电, 2014(3):75-78. ZENG Li, LU Qianping, WEI Yanting, et al. Fuzzing comprehensive judgment and predication of flood-discharge atomized rainfall intensity[J]. Northwest Hydropower, 2014(3):75-78.(in Chinese)
    [23] 戴丽荣, 张云芳, 张华, 等. 挑流泄洪雾化影响范围的人工神经网络模型预测[J]. 水利水电技术, 2003, 34(5):7-9, 63. DAI Lirong, ZHANG Yunfang, ZHANG Hua, et al. An artificial neural network model of flood discharge atomization prediction of hydropower station[J]. Water Resources and Hydropower Engineering, 2003, 34(5):7-9, 63.(in Chinese)
    [24] 柳海涛, 刘之平, 孙双科. 水舌入水喷溅的随机数学模型[J]. 水利水电科技进展, 2009, 29(6):1-4. LIU Haitao, LIU Zhiping, SUN Shuangke. Stochastic mathematical model of splashing from water jets[J]. Advances in Science and Technology of Water Resources, 2009, 29(6):1-4.(in Chinese)
    [25] 张华, 练继建, 李会平. 挑流水舌的水滴随机喷溅数学模型[J]. 水利学报, 2003, 34(8):21-25. ZHANG Hua, LIAN Jijian, LI Huiping. Mathematical model of droplet randomly formed by splash of nappe[J]. Journal of Hydraulic Engineering, 2003, 34(8):21-25.(in Chinese)
    [26] 周辉, 陈慧玲. 挑流泄洪雾化降雨的模糊综合评判方法[J]. 水利水运科学研究, 1994(1):165-170. ZHOU Hui, CHEN Huiling. Method of fuzzy synthetic evaluation for atomization-rain of jet overflow[J]. Hydro-Science and Engineering, 1994(1):165-170.(in Chinese)
    [27] 谭立新, 许唯临, 杨永全, 等. 水气二相流特点及其单流体模型[J]. 西安理工大学学报, 2000, 16(3):280-283. TAN Lixin, XU Weilin, YANG Yongquan, et al. Behaviors of air-water two-phase flow and its homogeneous model[J]. Journal of Xi'an University of Technology, 2000, 16(3):280-283.(in Chinese)
    [28] 许唯临, 王韦, 谭立新, 等. 水工水气两相流的数值模拟[J]. 水动力学研究与进展(A辑), 2001, 16(2):225-229. XU Weilin, WANG Wei, TAN Lixin, et al. Numerical simulation of air-water two-phase flows in hydraulic engineering[J]. Journal of Hydrodynamics (Serial A), 2001, 16(2):225-229.(in Chinese)
    [29] 沙海飞, 周辉, 吴时强, 等. 坝身泄洪水气两相流二维数值模拟[J]. 水动力学研究与进展(A辑), 2007, 22(3):311-316. SHA Haifei, ZHOU Hui, WU Shiqiang, et al. 2-D Numerical simulation of two-phase flow from surface outlet into plunge pool[J]. Journal of Hydrodynamics (Serial A), 2007, 22(3):311-316.(in Chinese)
    [30] 柳海涛, 孙双科, 刘之平. 泄洪雨雾输运模型及其计算验证[J]. 水利水电科技进展, 2011, 31(4):45-48, 94. LIU Haitao, SUN Shuangke, LIU Zhiping. Mathematical model for rain-fog transportation during flood discharge and its verification[J]. Advances in Science and Technology of Water Resources, 2011, 31(4):45-48, 94.(in Chinese)
    [31] Hirt C, Nichols B. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
    [32] 刘大有. 关于二相流、多相流、多流体模型和非牛顿流等概念的探讨[J]. 力学进展, 1994, 24(1):66-74. LIU Dayou. Discussion on the concepts of two-phase flow, multiphase flow, multifluid model and non-Newtonian flow[J]. Advances in Mechanics, 1994, 24(1):66-74.(in Chinese)
    [33] 谭立新. 水气二相流数值模拟研究[D]. 成都:四川大学, 1999. TAN Lixin. Mathematical modelling of air-water two-phase flows[D]. Chengdu:Sichuan University, 1999.(in Chinese)
    [34] 刘大有. 论气体混合物和两相流中的压强和热流[J]. 力学学报, 1986, 18(6):492-501. LIU Dayou. On pressure and thermal flux in gas-mixture flow and in two-phase flow[J]. Acta Mechanica Sinica, 1986, 18(6):492-501.(in Chinese)
    [35] Sokolichin A, Eigenberger G, Lapin A. Simulation of buoyancy driven bubbly flow:Established simplifications and open questions[J]. AIChE Journal, 2004, 50(1):24-45.
    [36] Drew D A. Mathematical modeling of two-phase flow[J]. Annual Review of Fluid Mechanics, 1983, 15(1):261-291.
    [37] Wallis G B. One-dimensional two-phase flow[M]. New York:McGraw-Hill Book Company, 1969.
    [38] Einstein A. A new determination of molecular dimensions[J]. Annalen der Physik, 1906, 19:289-306.
    [39] Beattie D R H, Whalley P B. A simple two-phase frictional pressure drop calculation method[J]. International Journal of Multiphase Flow, 1982, 8(1):83-87.
    [40] Dukler A E, Wicks M, Cleveland R G. Frictional pressure drop in two-phase flow:B. an approach through similarity analysis[J]. AIChE Journal, 1964, 10(1):44-51.
    [41] 刘刚, 童富果, 刘创, 等. 考虑掺混程度的水气混合流体动力黏滞性模型[J]. 水动力学研究与进展(A辑), 2019, 34(5):645-654. LIU Gang, TONG Fuguo, LIU Chuang, et al. Dynamic viscosity model of water-air two-phase mixture fluid considering mixing degree[J]. Chinese Journal of Hydrodynamics (Serial A), 2019, 34(5):645-654.(in Chinese)
    [42] 张宏伟, 刘之平, 张东, 等. 掺气水流声速的研究[J]. 水利学报, 2013, 44(9):1015-1022. ZHANG Hongwei, LIU Zhiping, ZHANG Dong, et al. Study on the sound velocity in an aerated flow[J]. Journal of Hydraulic Engineering, 2013, 44(9):1015-1022.(in Chinese)
    [43] 张宏伟. 掺气水流双流体模型数值模拟研究[D]. 西安:西安理工大学, 2002. ZHANG Hongwei. Study on numerical simulation of aerated water flow with a two-fluid model[D]. Xi'an:Xi'an University of Technology, 2002.(in Chinese)
    [44] 赵建福, 李炜. 可压缩掺气水流的一维特征分析[J]. 水动力学研究与进展(A辑), 1999, 14(1):1-7. ZHAO Jianfu, LI Wei. The characteristic analysis of one dimensional compressible aerated flows[J]. Journal of Hydrodynamics (Serial A), 1999, 14(1):1-7.(in Chinese)
    [45] Hench J E, Johnston J P. Two-dimensional diffuser performance with subsonic, two-phase, air-water flow[J]. Journal of Basic Engineering, 1972, 94(1):105-119.
    [46] Sharma S L, Ishii M, Hibiki T, et al. Beyond bubbly two-phase flow investigation using a CFD three-field two-fluid model[J]. International Journal of Multiphase Flow, 2019, 113:1-15.
    [47] Kim J H, Rohatgi U S, Hashemi A, et al. Advances in gas-liquid flows, 1990:presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Dallas, Texas, November 25-30, 1990[M]. New York:ASME, 1990.
    [48] Zienkiewicz O C, Taylor R L. The finite element method:basic formulation and linear problems[M]. New York:McGraw-Hill, 2000.
    [49] 刘卫东, 王振国, 周进. 采用二阶迎风格式的PISO算法研究[J]. 航空动力学报, 1998, 13(1):81-84. LIU Weidong, WANG Zhenguo, ZHOU Jin. Application of a second-order upwind scheme to PISO algorithm[J]. Journal of Aerospace Power, 1998, 13(1):81-84.(in Chinese)
    [50] 赵博渊, 李江飞, 王雅菲, 等. SIMPLE算法方腔流动数值仿真[J]. 辽宁化工, 2016, 45(6):760-763. ZHAO Boyuan, LI Jiangfei, WANG Yafei, et al. Calculation of driven square cavity flow based on SIMPLE method[J]. Liaoning Chemical Industry, 2016, 45(6):760-763.(in Chinese)
    [51] 杨晶. 基于Simple算法的方腔驱动流问题数值模拟[J]. 电力学报, 2010, 25(1):88-90. YANG Jing. Numerical simulation of the driven cavity flow based on simple method[J]. Journal of Electric Power, 2010, 25(1):88-90.(in Chinese)
    [52] 马龙, 刘侃, 任卫武, 等. 应用LAMPS求解方腔驱动流问题[J]. 价值工程, 2016, 35(25):207-209. MA Long, LIU Kan, REN Weiwu, et al. LAMPS used to solve cavity driven flow problem[J]. Value Engineering, 2016, 35(25):207-209.(in Chinese)
    [53] 李建会, 冉从勇, 何兰. 猴子岩水电站泄洪雾化区堆积体治理设计[J]. 人民长江, 2014, 45(8):51-54. LI Jianhui, RAN Congyong, HE Lan. Control design for deposit body in flood-discharge atomization zone of Houziyan Hydropower Station[J]. Yangtze River, 2014, 45(8):51-54.(in Chinese)
    [54] 陈辉, 姜伯乐, 陈端. 某电站泄洪雾流降雨数值计算研究[J]. 长江科学院院报, 2013, 30(8):58-62. CHEN Hui, JIANG Bole, CHEN Duan. Study on the flood discharging atomization in hydropower station by mathematical model[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(8):58-62.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘刚,童富果,田斌.基于水气两相流的水布垭电站泄洪雾化有限元分析[J].重庆大学学报,2020,43(6):90-102.

复制
分享
文章指标
  • 点击次数:1032
  • 下载次数: 891
  • HTML阅读次数: 876
  • 引用次数: 0
历史
  • 收稿日期:2020-01-04
  • 在线发布日期: 2020-06-06
文章二维码