结合地点类别和社交网络的兴趣点推荐
作者:
中图分类号:

TP391

基金项目:

国家自然科学基金资助项目(61502062,61672117)。


Point of interest recommendation based on location category and social network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着互联网和全球定位技术的高速发展,基于位置的社交网络(location-based social network)不断涌现,鼓励用户通过签到的形式发布个人动态并实时分享地理位置。海量的签到数据为挖掘用户偏好提供了机会,有利于提供基于位置的服务,如兴趣点(point of interest)推荐。兴趣点推荐旨在通过分析用户历史出行记录来得到用户的位置偏好,从而在未来为用户推荐新的地点,同时也能帮助广告商精准地投放用户感兴趣的广告。地点类别往往能够精准地提炼出位置的上下文语义,而现有的兴趣点研究大多都直接去计算用户对地点的偏好,没有有效地结合类别信息。通过对社交网站Yelp的公开数据集进行分析,发现相比访问共同的地点,朋友之间更容易访问相同的类别。因此,考虑朋友间地点类别偏好关系比直接考虑用户间项目偏好的关系更为合适。文中提出一种结合地点类别和社交网络的兴趣点推荐算法CSRS,先从用户历史签到记录获取用户地点类别偏好,然后考虑朋友间的类别偏好差异性。在Yelp数据集上的实验结果表明,与其他算法相比,文中提出的算法在准确率和召回率指标上都取得了更好的结果。

    Abstract:

    With the rapid development of internet and global positioning technology, location-based social network (LBSN) is emerging in large numbers which encourages users to share their personal feelings and locations in real time by check-ins. Volumes of check-in data afford an opportunity for mining user preference, which promotes location-based services such as point of interest (POI) recommendation. POI recommendation can not only help users identify favorite locations, but also help POI owner acquire more target customers. A location's category is the accurate abstraction of the context semantics of location. Most of present research only directly considers user preference on a specific location and ignore consideration of location's category. In Yelp, we find the ratio of common visited location is lower than that of common visited location category, which means that considering user preference on location category is more reasonable than that on specified locations. In light of the above, we present a novel POI recommendation method based on location category and social network named CSRS which infers users' preference on category from their check-ins history, and at the same time take the differences of category preferences among friends into consideration. The experimental results on Yelp demonstrate CSRS achieves superior precision and recall compared to other recommendation techniques.

    参考文献
    [1] 曹玖新, 董羿, 杨鹏伟, 等. LBSN中基于元路径的兴趣点推荐[J]. 计算机学报, 2016, 39(4):675-684. CAO Jiuxin, DONG Yi, YANG Pengwei, et al. POI recommendation based on meta-path in LBSN[J]. Chinese Journal of Computers, 2016, 39(4):675-684.(in Chinese)
    [2] 任星怡, 宋美娜, 宋俊德. 基于位置社交网络的上下文感知的兴趣点推荐[J]. 计算机学报, 2017, 40(4):824-841. REN Xingyi, SONG Meina, SONG Junde. Context-Aware point-of-interest recommendation in location-based social network[J]. Chinese Journal of Computers, 2017, 40(4):824-841.(in Chinese)
    [3] 任星怡, 宋美娜, 宋俊德. 基于用户签到行为的兴趣点推荐[J]. 计算机学报, 2017, 40(1):28-51. REN Xingyi, SONG Meina, SONG Junde. Point-of-interest recommendation based on the user check-in behavior[J]. Chinese Journal of Computers, 2017, 40(1):824-841.(in Chinese)
    [4] 刘树栋, 孟祥武. 基于位置的社会化网络推荐系统[J]. 计算机学报, 2015, 38(2):322-336. LIU Shudong, MENG Xiangwu. Recommender system in location-based social networks[J]. Chinese Journal of Computers, 2015, 38(2):322-336.(in Chinese)
    [5] Ye M, Yin P F, Lee W C, et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]//Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval. Beijing, China, 2011:325-334.
    [6] Yuan Q, Cong G, Ma Z Y, et al. Time-aware point-of-interest recommendation[C]//Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. Dublin, Ireland, 2013:363-372.
    [7] Cheng C, Yang H, Lyu M R, et al. Where you like to go next:successive point-of-interest recommendation[C]//Proceedings of the Twenty-Third international joint conference on Artificial Intelligence. Beijing, China, 2013:2605-2611.
    [8] Feng S S, Li X T, Zeng Y F, et al. Personalized ranking metric embedding for next new POI recommendation[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015:2069-2075.
    [9] Zhang J D, Chow C Y, Li Y H. LORE:exploiting sequential influence for location recommendations[C]//Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Dallas, Texas, 2014:103-112.
    [10] Gao H J, Tang J L, Hu X, et al. Exploring temporal effects for location recommendation on location-based social networks[C]//Proceedings of the 7th ACM conference on Recommender systems. Hong Kong, China, 2013:93-100.
    [11] Griesner J B, Abdessalem T, Naacke T. POI recommendation:towards fused matrix factorization with geographical and temporal influences[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna, Austria, 2015:301-304.
    [12] Liu Y C, Liu C R, Liu B, et al. Unified point-of-interest recommendation with temporal interval assessment[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016:1015-1024.
    [13] Zhao S L, Zhao T, Yang H Q, et al. STELLAR:spatial-temporal latent ranking for successive point-of-interest recommendation[C]//Proceedings of the 30th Conference on Artificial Intelligence. Phoenix, USA, 2016:1015-1024.
    [14] Zhang W, Wang J Y. Location and time aware social collaborative retrieval for new successive point-of-interest recommendation[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia, 2015:1221-1230.
    [15] Ye M, Yin P F, Lee W C. Location recommendation for location-based social networks[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, USA, 2010:458-461.
    [16] Cheng C, Yang H Q, King I, et al. Fused matrix factorization with geographical and social influence in location-based social networks[C]//Proceedings of the 26th Conference on Artificial Intelligence. Toronto, Canada, 2012:17-23.
    [17] Hu B, Ester M. Spatial topic modeling in online social media for location recommendation. Proceedings of the 7th ACM conference on recommender systems. Hong Kong, China, 2013:25-32.
    [18] Gao H J, Tang J L, Hu X, et al. Content-aware point of interest recommendation on location-based social networks[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Astin, USA, 2015:1721-1727.
    [19] Zhang F Z, Yuan N J, Zheng K, et al. Exploiting dining preference for restaurant recommendation[C]//Proceedings of the 25th International Conference on World Wide Web. Montréal, Canada, 2016:725-735.
    [20] Yin H Z, Wang W Q, Wang H, et al. Spatial-aware hierarchical collaborative deep learning for POI recommendation[J]. IEEE Transactions on Knowledge & Data Engineering, 2017, 29(11):2537-2551.
    [21] Zhang J D, Chow C Y. GeoSoCa:Exploiting geographical, social and categorical correlations for point-of-interest recommendations[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiago, Chile, 2015:443-452.
    [22] Lian D F, Zhao C, Xie X, et al. GeoMF:Joint geographical modeling and matrix factorization for point-of-interest recommendation[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, USA, 2014:831-840.
    [23] Liu X, Liu Y, Aberer K, et al. Personalized point-of-interest recommendation by mining users' preference transition[C]//Proceedings of the 22nd ACM international conference on Information & Knowledge Management (CIKM'13). San Francisco, USA, 2013:733-738.
    [24] Bao J, Zheng Y, Mokbel M F. Location-based and preference-aware recommendation using sparse geo-social networking data[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems. Redondo Beach, USA, 2012:199-208.
    [25] Zhao Y L, Nie L, Wang X, et al. Personalized recommendations of locally interesting venues to tourists via cross-region community matching[J]. Acm Transactions on Intelligent Systems & Technology, 2014, 5(3):1-26.
    [26] Hu L K, Sun A X, Liu Y. Your neighbors affect your ratings:on geographical neighborhood influence to rating prediction[C]//Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. Queensland, Australia, 2014:345-354.
    [27] Liu B, Fu Y J, Yao Z J, et al. Learning geographical preferences for point-of-interest recommendation[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, USA, 2013:1043-1051.
    [28] Yuan Q, Cong G, Sun A X. Graph-based point-of-interest recommendation with geographical and temporal influences[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. Shanghai, China, 2014:659-668.
    [29] He J, Li X, Liao L J, Song D D, et al. Inferring a personalized next point-of-interest recommendation model with latent behavior patterns[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016:137-143.
    [30] He J, Li X, Liao L J. Category-aware next point-of-interest recommendation via listwise bayesian personalized ranking[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, Australia, 2017:1837-1843.
    [31] Ma H, Zhou D Y, Liu C, et al. Recommender systems with social regularization[C]//Proceedings of the fourth ACM international conference on Web search and data mining. Hong Kong, China, 2011:287-296.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐浩然,曾骏,李烽,文俊浩.结合地点类别和社交网络的兴趣点推荐[J].重庆大学学报,2020,43(7):42-50.

复制
分享
文章指标
  • 点击次数:787
  • 下载次数: 934
  • HTML阅读次数: 1292
  • 引用次数: 0
历史
  • 收稿日期:2019-12-16
  • 在线发布日期: 2020-07-18
文章二维码