面向流数据的实时处理及服务化系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311.1

基金项目:

国家重点研发计划资助项目(2017YFC0804406)。


View-driven flow data oriented real-time processing and service system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    流数据的处理需求复杂多变,业务人员要进行相应的算法定制,不仅需要相关的编程知识,更要应对繁琐的处理流程和冗长的开发周期。为解决上述问题,文中设计并实现了基于流程建模的流数据处理及服务化系统,提供了对于多源流数据的实时接入,流数据服务化以及流数据处理服务化的能力。该系统将流数据处理过程封装为服务提供给用户,允许用户拖拽组合流数据处理和服务化模块、配置相关参数,定义流数据处理及服务化的过程,快速又自然地实现流数据处理及服务化的任务,将处理结果经由服务路由实时推送到其他应用系统,满足不同的业务需求。案例分析表明,与传统的流数据处理系统相比,本系统具有高效、灵活、可配置等特点,在实用性、可用性和伸缩性方面都更有优势。

    Abstract:

    The processing requirements of these data are also complex and changeable. The business personnel need to carry out corresponding algorithm customization, which involves not only relevant programming knowledge, but also cumbersome processing flow and lengthy development cycle. In order to solve the above problems, this paper designed and implemented a stream data processing and service system based on process modeling, which provided real-time access to multi-source stream data, stream data service and stream data processing service. The system encapsulated the stream data processing process into a service provided to the user, allowing the user to drag and drop the combined stream data processing and service module, configure relevant parameters, define the process of stream data processing and service, and implement stream data processing and service-oriented tasks quickly and naturally. The processing results were pushed to other application systems in real time through service routes to meet different business needs. Case studies show that the system is more efficient, flexible, and configurable than traditional streaming data processing systems, and has advantages in terms of usability, availability, and scalability.

    参考文献
    相似文献
    引证文献
引用本文

狄程,杨中国,韩燕波,刘晨.面向流数据的实时处理及服务化系统[J].重庆大学学报,2020,43(7):75-83.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-07-18
  • 出版日期:
文章二维码