面向维基百科的概念依赖关系挖掘方法
作者:
中图分类号:

TP311

基金项目:

湖北省教育厅人文社科研究资助项目(19Q011)。


Concept dependency mining method for Wikipedia
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在互联网技术高度发达的时代,网络上的学习资源呈现出指数型增长态势,面对各种学习对象、概念之间存在的多样化和无序性,如果能识别出之间的依赖关系,将有可能对计算机教育产生重要影响。针对该问题,提出一种面向维基百科的概念依赖关系识别方法,利用概念在维基百科中的特点,设计出一套识别概念依赖关系模型,在公共数据集上采用基于机器学习的分类算法进行测试。实验结果表明,该模型具有较高准确率和召回率,能够有效发现概念之间的依赖关系。

    Abstract:

    In the era of highly developed Internet technology, the learning resources on the Internet show an exponential growth trend. With the diversification and disorder between various learning objects and concepts, the recognition of the dependencies between them will have a major impact on computer education. Aiming at the solution to this problem, this paper proposed a concept dependency recognition method for Wikipedia. Using the characteristics of the concept in Wikipedia, a set of recognition concept dependency model was designed, and the machine learning based classification algorithm was used to test on the public data set. The experimental results show that with high accuracy and recall rate, the model can effectively discover the dependencies between concepts.

    参考文献
    [1] Talukdar P P, Cohen W W. Crowdsourced comprehension:predicting prerequisite structure in wikipedia[C]//Proceedings of the Seventh Workshop on Building Educational Applications Using NLP. New York, USA:Association for Computational Linguistics,2012:307-315.
    [2] Vuong A, Nixon T, Towle B. A method for finding prerequisites within a curriculum[C]//Proceedings of the 4th International Conference on Educational Data Mining. Eindhoven, Netherlands:DBLP,2011:211-216.
    [3] Liang C, Wu Z, Huang W, et al. Measuring prerequisite relations among concepts[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. New York, USA:Association for Computational Linguistics,2015:1668-1674.
    [4] Wang S, Ororbia A, Wu Z, et al. Using prerequisites to extract concept maps from textbooks[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York, USA:ACM,2016:317-326.
    [5] Scheines R, Silver E, Goldin I M. Discovering prerequisite relationships among knowledge components[J]. Educational Data Mining,2014:355-356.
    [6] Liu H, Ma W, Yang Y, et al. Learning concept graphs from online educational data[J]. Journal of Artificial Intelligence Research,2016,55:1059-1090.
    [7] Pan L, Li C, Li J, et al. Prerequisite relation learning for concepts in MOOCs[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. New York, USA:Association for Computational Linguistics,2017:1447-1456.
    [8] Yang Y, Liu H, Carbonell J, et al. Concept graph learning from educational data[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. New York, USA:ACM,2015:159-168.
    [9] Gasparetti F, Limongelli C, Sciarrone F. Exploiting wikipedia for discovering prerequisite relationships among learning objects[C/OL]. Interactive Environments & Emerging Technologies for Elearning. Piscataway, NJ:IEEE,2015(2015-08-24)[2020-04-05].https://doi.org/10.1109/ITHET.2015.7218038.
    [10] Limongelli C, Gasparetti F, Sciarrone F. Wiki course builder:A system for retrieving and sequencing didactic materials from Wikipedia[C/OL]. International Conference on Information Technology Based Higher Education & Training. Piscataway, NJ:IEEE, 2015(2015-08-24)[2020-04-05].https://doi.org/10.1109/ITHET.2015.7218041.
    [11] Gasparetti F, De Medio C, Limongelli C, et al. Prerequisites between learning objects:Automatic extraction based on a machine learning approach[J]. Telematics and Informatics,2018,35(3):595-610.
    [12] Liang C, Ye J, Zhao H, et al. Active learning of strict partial orders:A case study on concept prerequisite relations[J/OL]. Machine Learning,2018[2020-04-15]. https://www.researchgate.net/publication/322634491_Active_Learning_of_Strict_Partial_Orders_A_Case_Study_on_Concept_Prerequisite_Relations.
    [13] Witten I H, Milne D N. An effective, low-cost measure of semantic relatedness obtained from Wikipedia links[J/OL]. Association for the Advancement of Artificial Intelligence,2008[2020-04-25].http://hdl.handle.net/10289/1777.
    [14] Ratinov L A, Roth D, Downey D, et al. Local and Global Algorithms for Disambiguation to Wikipedia[C]//The 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies, Proceedings of the Conference. New York, USA:Association for Computational Linguistics,2011:1375-1384.
    [15] Milne D, Witten I H. An open-source toolkit for mining Wikipedia[J]. Artificial Intelligence,2013,194:222-239.
    [16] Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves[C]//Proceedings of the 23rd International Conference on Machine Learning. New York, USA:ACM,2006:233-240.
    [17] Liaw A, Wiener M. Classification and regression by randomForest[J]. R news,2002,2(3):18-22.
    [18] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3:993-1022.
    [19] Salton G, Buckley C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management,1988,24(5):513-523.
    [20] Rong X. Word2vec parameter learning explained[J/OL]. Computer ence,2014[2020-04-15]. https://www.researchgate.net/publication/268226652_word2vec_Parameter_Learning_Explained
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周洋,肖奎,曾诚.面向维基百科的概念依赖关系挖掘方法[J].重庆大学学报,2020,43(7):111-120.

复制
分享
文章指标
  • 点击次数:645
  • 下载次数: 820
  • HTML阅读次数: 1302
  • 引用次数: 0
历史
  • 收稿日期:2020-01-18
  • 在线发布日期: 2020-07-18
文章二维码