基于双层电阻膜的宽频带超材料吸波体设计
作者:
中图分类号:

TN953.6

基金项目:

国家自然科学基金资助项目(51505049);重庆市基础研究与前沿探索资助项目(cstc2018jcyjAX0291)。


Design of a wideband metamaterial absorber based on double-layer resistive film
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    设计了一种基于双层电阻膜的宽频带、极化不敏感和宽入射角的超材料吸波体,该吸波体结构单元依次由圆环电阻膜、介质基板、圆环电阻膜、介质基板和金属背板组成。采用时域有限差分算法对其进行数值模拟分析,仿真得到的反射率和吸收率表明:该吸波体在11.5~20.3 GHz范围内对入射电磁波有大于90%以上的强吸收特性。仿真得到的不同极化角和不同入射角表明该吸波体具有极化不敏感和宽入射角特性。进一步仿真得到各个结构参数对吸收率的影响表明:该双层电阻膜结构吸波体对电磁波的吸收主要是基于电路谐振机制,通过对介质基板厚度和电阻膜宽度、电阻值的设计可以对频率范围和工作带宽进行调节,使吸波体实现超宽带吸收。

    Abstract:

    A wideband, polarization-insensitive and wide-angle metamaterial absorber based on double-layer resistive film is proposed in this paper. A unit cell of the absorber consists of a ring resistive film, a substrate, a ring resistive film, a substrate layer and a metal backboard in turn. The simulations and analysis of electromagnetic absorbing properties of this absorber are performed by the finite-difference time-domain method. The simulated reflection and absorption indicate that the absorption of incoming electromagnetic waves by this absorber is higher than 90% in a frequency range of 11.5 GHz to 20.3 GHz. The simulated absorptions under different polarization conditions and incident angles show that this absorber is polarization-insensitive and of a wide incident angle. The simulated influence of structure parameters on the absorption indicates that the absorption of this absorber originates mainly from the absorbing mechanism of circuit resonance. The operation frequency range and band width can be adjusted by the design of the substrate thickness, the resistance and the width of the resistive film so as to achieve the strongest absorption with an ultra-wide band.

    参考文献
    [1] Wang S, Garet F, Blary K, et al. Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz[J]. Applied Physics Letters, 2010, 97(18):181902.
    [2] Ozbay E, Aydin K, Ozkan G, et al. Experimental demonstration of negative refraction and subwavelength imaging by left-handed composite metamaterials[J]. MRS Proceedings, 2006, 919:0919-J03-06.
    [3] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402.
    [4] Liu Y, Li Z Y, Zhang W Z. Study on stealthy characteristics of electromagnetic metamaterials[J]. Key Engineering Materials, 2012, 531/532:276-279.
    [5] Sood D, Tripathi C C. A compact ultrathin ultra-wideband metamaterial microwave absorber[J]. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2017, 16(2):514-528.
    [6] Ramya S, Srinivasa Rao I. A compact ultra-thin ultra-wideband microwave metamaterial absorber[J]. Microwave and Optical Technology Letters, 2017, 59(8):1837-1845.
    [7] Xiong H, Hong J S, Luo C M, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures[J]. Journal of Applied Physics, 2013, 114(6):064109.
    [8] Chaurasiya D, Ghosh S, Bhavttacjaryya S et al. Dual-band polarization-insensitive metamaterial absorber with bandwidth-enhancement at Ku-band for EMI/EMC application[C]//2014 IEEE International Microwave and RF Conference, December 14-16, 2015, Bangalore, India. IEEE, 2015:96-99.
    [9] Hoa N T Q, Lam H P, Tung P D. Wide-angle and polarization-independent broadband microwave metamaterial absorber[J]. Microwave and Optical Technology Letters, 2017, 59(5):1157-1161.
    [10] Sharma R, Singh H. Left handed metamaterial antenna design for GSM 1.8 GHz applications[C]//20152nd International Conference on Recent Advances in Engineering & Computational Sciences, December 21-23, 2015, Chandigarh, India. IEEE, 2015:1-5.
    [11] Mahamuni CV. Performance enhancement of microstrip patch antenna using metamaterial cover[C]//2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication, December 22-24, 2016, Jalgoon, India. IEEE, 2017:382-388.
    [12] Ayop O, Rahim M K A, Murad N A, et al. Dual-resonant polarization-independent and wide-angle metamaterial absorber in X-band frequency[J]. Applied Physics A, 2016, 122(4):374.
    [13] Yoo M, Kim H K, Lim S. Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15:414-417.
    [14] Bhattacharyya S, Ghosh S, Chaurasiya D, et al. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber[J]. Applied Physics A, 2015, 118(1):207-215.
    [15] Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5):1551-1558.
    [16] Zhang H B, Zhou P H, Lu H P, et al. Resistance selection of high impedance surface absorbers for perfect and broadband absorption[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2):976-979.
    [17] 顾超, 屈绍波, 裴志斌, 等. 基于电阻膜的宽频带超材料吸波体的设计[J]. 物理学报, 2011, 60(8):662-666.GU Chao, QU Shaobo, PEI Zhibin, et al. Design of a wide-band metamaterial absorber based on resistance films[J]. Acta Physica Sinica, 2011, 60(8):662-666. (in Chinese)
    [18] 程用志, 聂彦, 龚荣洲, 等. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计[J]. 物理学报, 2013, 62(4):124-129.CHENG Yongzhi, NIE Yan, GONG Rongzhou, et al. Design of an ultrathin and wideband metamaterial absorber based on resistance film and fractal frequency selective surface[J]. Acta Physica Sinica, 2013, 62(4):124-129. (in Chinese)
    相似文献
    引证文献
引用本文

李建辉,孟杰,吕中亮,杨孟涛,黎泽伦,邓显玲.基于双层电阻膜的宽频带超材料吸波体设计[J].重庆大学学报,2020,43(8):47-53.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-15
  • 在线发布日期: 2020-08-25
文章二维码