三峡水库不同运行工况下中段干流碳源气体释放通量研究
作者:
中图分类号:

X524

基金项目:

国家自然科学基金项目(51609026);重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0280);重庆市研究生教育创新基金项目(CYS19246);重庆交通大学河海学院研究生科研创新(创新基金)项目(YC2019002)。


Study on the release fluxes of carbon source gases under different operating conditions in the middle reach of the main stream of the Three Gorges Reservoir
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    来自陆地大量有机碳源的输入,以及三峡库区调度运行和筑坝蓄水导致CO2、CH4等碳源气体的排放成为近来关注的热点。以三峡库区干流中段为研究对象,于2017年8月—2018年11月对忠县(ZX),万州(WZ),涪陵(FL)进行每月采样分析,探求水气界面CO2、CH4通量在水库不同运行工况下的变化特征。研究发现,在观测期间内,ZX采样点CO2浓度在0.008 6~0.115 3 mmol/L波动,WZ采样点CO2浓度在0.003 5~0.116 8 mmol/L波动,FL采样点0.006 3~0.098 6 mmol/L,整体上3个采样点的CO2浓度变化趋于一致,都在库区泄水期运行4—5月CO2浓度达到峰值,在低水位运行期的6—9月降到最低值。CH4通量在水库低水位运行期表现为"汇",FL点位在泄水期达到"源"的最大值;3个采样点的CO2通量在泄水期均表现为"源"的特征,低水位运行期的CO2通量表现为"源"与"汇"的转换。通过与国外已有水库监测数据比较分析,CO2扩散通量在全球水库序列中处于中等水平,CH4扩散通量在全球水库序列中处于中等偏下水平。

    Abstract:

    The input of large quantities of organic carbon sources from the land, and the discharge of carbon sources such as CO2 and CH4 caused by the operation and damming in the Three Gorges Reservoir Area have become the hot spots of recent research. In order to reveal the variation characteristics of CO2 and CH4 concentrations in different flow levels in the Three Gorges Reservoir Area, this study took the middle reach of the main stream of the Three Gorges Reservoir as the research objects. Samples were taken from Zhongxian County (ZX), Wanzhou (WZ), Fuling (FL)monthly from August 2017 to November 2018 to analyze and study the characteristics of CO2 and CH4 fluxes at the water-air interface under different operating conditions. Results showed that during the research period, CO2concentration of the ZX, WZ and FL was between 0.008 6 mmol/L and 0.115 3 mmol/L, 0.003 5 mmol/L and 0.116 8 mmol/L, and 0.006 3 mmol/L and 0.098 6 mmol/L, respectively. The concentration of CO2 at these three sampling points tended to be consistent and reached its peak during the drain period from April to May and its lowest point in the low water level operation period from June to September. CH4 flux exhibited the feature of a sink during the operation at a low water level, but at FL it reached the maximum value as a source in the discharge period. The CO2 fluxes at the three locations showed the feature of a source during the discharge period, but during low water level operation period, CO2 flux indicated the switch between a source and a sink. CO2 flux was at a medium level and CH4 flux was at a lower-middle level compared with those of other reservoirs in the world.

    参考文献
    [1] Duchemin E, Lucotte M, Canuel R, et al. Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region[J]. Global Biogeochemical Cycles, 1995, 9(4):529-540.
    [2] Rudd J W M, Hecky R E, Harris R, et al. Are hydroelectric reservoirs significant sources of greenhouse gases[J]. Ambio, 1993, 22(4):246-248.
    [3] Fearnside P M. Hydroelectric dams in the Brazilian Amazon as sources of ‘Greenhouse’ gases[J]. Environmental Conservation, 1995, 22(1):7-19.
    [4] Barros N, Cole J J, Tranvik L J, et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011, 4(9):593-596.
    [5] 冉景江, 林初学, 郭劲松, 等. 水库温室效应研究进展与主要影响因素分析[J]. 长江流域资源与环境, 2011, 20(2):197-202.RAN Jingjiang, LIN Chuxue, GUO Jinsong, et al. Advances in reservoir greenhouse effects and principal influence factors analysis[J]. Resources and Environment in the Yangtze Basin, 2011, 20(2):197-202. (in Chinese)
    [6] 陈进, 黄薇. 水库温室气体排放问题初探[J]. 长江科学院院报, 2008, 25(6):1-5.CHEN Jin, HUANG Wei. Problem on greenhouse gas emissions of reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(6):1-5. (in Chinese)
    [7] 蒋滔, 郭劲松, 李哲, 等. 三峡水库不同运行状态下支流澎溪河水-气界面温室气体通量特征初探[J]. 环境科学, 2012, 33(5):1463-1470.JIANG Tao, GUO Jinsong, LI Zhe, et al. Air-water surface greenhouse gas flux in Pengxi River at different operational stages of the Three Gorges Reservoir[J]. Environmental Science, 2012, 33(5):1463-1470. (in Chinese)
    [8] 汪国骏, 胡明明, 王雨春, 等. 蓄水初期三峡水库草堂河水-气界面CO2和CH4通量日变化特征及其影响因素[J]. 湖泊科学, 2017, 29(3):696-704.WANG Guojun, HU Mingming, WANG Yuchun, et al. Diurnal variation and influencing factors of carbon dioxide and methane emissions at water-air interface of Caotang River, Three Gorges Reservoir in the initial impoundment period[J]. Journal of Lake Sciences, 2017, 29(3):696-704. (in Chinese)
    [9] 杨博逍. 三峡以及金沙江下游水库水气界面温室气体通量对比研究[D]. 重庆:重庆交通大学, 2017.YANG Boxiao. Comparative study on the air-water fluxes of CO2 and CH4 in the Three Gorges Reservoir and the downstream of Jinsha River, China[D]. Chongqing:Chongqing Jiaotong University, 2017. (in Chinese)
    [10] Richey J E, Melack J M, Aufdenkampe A K, et al. Outgassing from Amazonian Rivers and wetlands as a large tropical source of atmospheric CO2[J]. Nature, 2002, 416(6881):617-620.
    [11] Richey J E, Hedges J I, Devol A H, et al. Biogeochemistry of carbon in the Amazon River[J]. Limnology and Oceanography, 1990, 35(2):352-371.
    [12] Li Z, Guo J S, Long M, et al. Seasonal variation of nitrogen and phosphorus in Xiaojiang River:a tributary of the Three Gorges Reservoir[J]. Frontiers of Environmental Science & Engineering in China, 2009, 3(3):334-340.
    [13] Lu F, Yang L, Wang X K, et al. Preliminary report on methane emissions from the Three Gorges Reservoir in the summer drainage period[J]. Journal of Environmental Sciences, 2011, 23(12):2029-2033.
    [14] 李哲, 姚骁, 何萍, 等. 三峡水库澎溪河水-气界面CO2、CH4扩散通量昼夜动态初探[J]. 湖泊科学, 2014, 26(4):576-584.LI Zhe, YAO Xiao, HE Ping, et al. Diel variations of air-water CO2 and CH4 diffusive fluxes in the Pengxi River, Three Gorges Reservoir[J]. Journal of Lake Sciences, 2014, 26(4):576-584. (in Chinese)
    [15] 罗佳宸, 李思悦. 三峡库区典型河流水-气界面CO2通量日变化观测及其影响因素分析[J]. 环境科学, 2018, 39(11):5217-5226.LUO Jiachen, LI Siyue. Daily variation of CO2 flux at water-air interface and analysis of its affecting factors in a typical river of the Three Gorges reservoir[J]. Environmental Science, 2018, 39(11):5217-5226.(in Chinese)
    [16] 秦宇, 张渝阳, 李哲, 等. 三峡澎溪河水华期间水体CH4浓度及其通量变化特征初探[J]. 环境科学, 2018, 39(4):1578-1588.QIN Yu, ZHANG Yuyang, LI Zhe, et al. CH4 fluxes during the algal bloom in the Pengxi River[J]. Environmental Science, 2018, 39(4):1578-1588. (in Chinese)
    [17] Tremblay A, Varfalvy L, Roehm C, et al. Greenhouse gas emissions:fluxes and processes[M]. Berlin/Heidelberg:Springer-Verlag, 2005. DOI:10.1007/b137840.
    [18] St Louis V L, Kelly C A, Duchemin É, et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere:a global estimate[J]. BioScience, 2000, 50(9):766-775.
    [19] Friedl G, Wüest A. Disrupting biogeochemical cycles:consequences of damming[J]. Aquatic Sciences, 2002, 64(1):55-65.
    [20] 冉祥滨, 姚庆祯, 巩瑶, 等. 蓄水前后三峡水库营养盐收支计算[J]. 水生态学杂志, 2009, 30(2):1-8.RAN Xiangbin, YAO Qingzhen, GONG Yao, et al. Nutrient budget of Three Gorges reservoir pre-and-post impoundment[J]. Journal of Hydroecology, 2009, 30(2):1-8. (in Chinese)
    [21] Stanley E H, Casson N J, Christel S T, et al. The ecology of methane in streams and rivers:patterns, controls, and global significance[J]. Ecological Monographs, 2016, 86(2):146-171.
    [22] Bastviken D, Cole J, Pace M, et al. Methane emissions from lakes:dependence of lake characteristics, two regional assessments, and a global estimate[J]. Global Biogeochemical Cycles, 2004, 18(4). DOI:10.1029/2004gb002238.
    [23] Kling G W, Kipphut G W, Miller M C. The flux of CO2 and CH4 from lakes and Rivers in arctic Alaska[M]//Toolik Lake. Dordrecht:Springer Netherlands, 1992:23-36. DOI:10.1007/978-94-011-2720-2_3.
    [24] Tranvik L J, Downing J A, Cotner J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6part2):2298-2314.
    [25] Soumis N, Duchemin É, Canuel R, et al. Greenhouse gas emissions from reservoirs of the western United States[J]. Global Biogeochemical Cycles, 2004, 18(3):1-11. DOI:10.1029/2003gb002197.
    [26] Huttunen J T, Väisänen T S, Hellsten S K, et al. Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland[J]. Global Biogeochemical Cycles, 2002, 16(1):3-1-3-17.
    [27] dos Santos M A, Rosa L P, Sikar B, et al. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants[J]. Energy Policy, 2006, 34(4):481-488.
    [28] 刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应:来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4):384-396.LIU Congqiang, WANG Fushun, WANG Yuchun, et al. Responses of aquatic environment to river damming:from the geochemical view[J]. Resources and Environment in the Yangtze Basin, 2009, 18(4):384-396.(in Chinese)
    [29] 喻元秀, 刘丛强, 汪福顺, 等. 洪家渡水库溶解二氧化碳分压的时空分布特征及其扩散通量[J]. 生态学杂志, 2008, 27(7):1193-1199.YU Yuanxiu, LIU Congqiang, WANG Fushun, et al. Spatiotemporal characteristics and diffusion flux of partial pressure of dissolved carbon dioxide (pCO2) in Hongjiadu Reservoir[J]. Chinese Journal of Ecology, 2008, 27(7):1193-1199.
    [30] 梅航远, 汪福顺, 姚臣谌, 等. 万安水库春季二氧化碳分压的分布规律研究[J]. 环境科学, 2011, 32(1):58-63.MEI Hangyuan, WANG Fushun, YAO Chenchen, et al. Diffusion flux of partial pressure of dissolved carbon dioxide in Wan'an Reservoir in spring[J]. Environmental Science, 2011, 32(1):58-63. (in Chinese)
    [31] Richey J E, Wissmar R C, Devol A H, et al. Carbon flow in four lake ecosystems:a structural approach[J]. Science, 1978, 202(4373):1183-1186.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑望,张渝阳,蒋成勇,秦宇.三峡水库不同运行工况下中段干流碳源气体释放通量研究[J].重庆大学学报,2020,43(8):97-106.

复制
分享
文章指标
  • 点击次数:581
  • 下载次数: 1161
  • HTML阅读次数: 649
  • 引用次数: 0
历史
  • 收稿日期:2019-06-25
  • 在线发布日期: 2020-08-25
文章二维码