信息物理融合下的建筑施工现场碳排放实时监测系统
作者:
中图分类号:

TU71

基金项目:

中央高校基本科研业务费资助项目(2019CDJSK03PT07);"十三五"国家重点研发计划资助项目(2016YFC0701807);重庆市教育委员会科学技术研究计划青年项目资助项目(KJQN201800125)。


Real-time monitoring system of carbon emission in construction site under the cyber-physical systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    随着全球变暖现象加剧,控制建筑业碳排放成为了重要研究课题,建筑施工现场碳排放的计算与监测问题成为重点。为了有效解决这一问题,梳理了现有碳排放计算方法,总结了各类方法的特点,提出了基于信息物理系统(CPS)技术的施工现场碳排放实时监测系统框架;针对施工现场碳排放计算边界及计算逻辑进行了定义,并从硬件系统与软件系统两部分实现了碳排放实时监测系统的开发。最后,通过无线传感器、服务器、数据库以及客户端的有效耦合,实现了对建筑施工现场的碳排放进行实时监测和数据分析。

    Abstract:

    The control of carbon emission in construction industry becomes an important research topic with the aggravation of global warming, hence the need for research of calculation and monitoring of carbon emission in construction sites. In this paper, the existing carbon emission calculation methods were combed out, and the characteristics of them were summarized. Then, the framework of real-time monitoring system of carbon emission in construction sites combined with cyber-physical systems (CPS) technology was proposed. The calculation boundary and calculation logic of carbon emission were definded, and the real-time carbon emission monitoring system was developed from hardware system and software system. Through the effective coupling of wireless sensors, servers, databases and clients, the system finally accomplished real-time monitoring and data analysis of carbon emissions in construction sites.

    参考文献
    [1] Edenhofer O, Seyboth K. Intergovernmental panel on climate change (IPCC)[J]. Encyclopedia of Energy, Natural Resource and Environmental Economics, 2013(1):48-56.
    [2] 韩一宁, 袁永博. 基于能量理论的建筑碳排放量核算模型研究[J]. 工程管理学报, 2014, 28(2):6-10.HAN Yining, YUAN Yongbo. A CO2 emission calculation model for buildings based on energy theory[J]. Journal of Engineering Management, 2014, 28(2):6-10. (in Chinese)
    [3] 晏永刚, 任宏, 况明玥. 区域碳排放变化的驱动因素、分解模型与实证研究[J].重庆大学学报, 2011, 17(4):19-24.YAN Yonggang, REN Hong, KUANG Mingyue. Driving factors, decomposition analysis model and empirical study on regional carbon emissions change[J]. Journal of Chongqing University, 2011, 17(4):19-24. (in Chinese)
    [4] 刘猛, 李百战, 姚润明. 水泥生产能源消耗内含碳排放量分析[J]. 重庆大学学报, 2011, 34(3):116-120, 131.LIU Meng, LI Baizhan, YAO Runming, et al. Embodied carbon emission from energy consumption in the production of selected cement products[J]. Journal of Chongqing University, 2011, 34(3):116-120, 131. (in Chinese)
    [5] 张智慧, 尚春静, 钱坤. 建筑生命周期碳排放评价[J]. 建筑经济, 2010, 31(2):44-46.ZHANG Zhihui, SHANG Chunjing, QIAN Kun. Carbon emission assessment of building life cycle[J]. Construction Economy, 2010, 31(2):44-46. (in Chinese)
    [6] Zhan J, Liu W, Wu F, et al. Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou city[J]. Journal of Cleaner Production, 2018, 194:318-326.
    [7] Peng C H. Calculation of a building's life cycle carbon emissions based on ecotect and building information modeling[J]. Journal of Cleaner Production, 2016, 112:453-465.
    [8] Shiftehfar R, Golparvar-Fard M, Peña-Mora F, et al. The application of visualization for construction emission monitoring[C/OL]. Construction Research Congress. Virginia, USA:ASCE, 2010[2020-05-25]. https://ascelibrary.org/doi/10.1061/41109%28373%29140.
    [9] 李静, 刘燕. 基于全生命周期的建筑工程碳排放计算模型[J]. 工程管理学报, 2015, 29(4):12-16.LI Jing, LIU Yan. The carbon emission accounting model based on building lifecycle[J]. Journal of Engineering Management, 2015, 29(4):12-16. (in Chinese)
    [10] Zhang X C, Wang F L. Assessment of embodied carbon emissions for building construction in China:Comparative case studies using alternative methods[J]. Energy and Buildings, 2016, 130:330-340.
    [11] Stephan A, Stephan L. Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings[J]. Applied Energy, 2016, 161:445-464.
    [12] Hajibabai L, Aziz Z, Peña-Mora F. Visualizing greenhouse gas emissions from construction activities[J]. Construction Innovation, 2011, 11(3):356-370.
    [13] Li H X, Zhang L M, Mah D, et al. An integrated simulation and optimization approach for reducing CO2 emissions from on-site construction process in cold regions[J]. Energy and Buildings, 2017, 138:666-675.
    [14] Davies P J, Emmitt S, Firth S K. On-site energy management challenges and opportunities:a contractor's perspective[J]. Building Research & Information, 2013, 41(4):450-468.
    [15] 陈文奇. 信息物理融合系统的物理世界的建模方法[D]. 广州:广东工业大学, 2015.CHEN Wenqi. Modeling approach of physical world for cyber-physical system[D]. Guangzhou:Guangdong University of Technology, 2015. (in Chinese)
    [16] Li L J, Chen K H. Quantitative assessment of carbon dioxide emissions in construction projects:a case study in Shenzhen[J]. Journal of Cleaner Production, 2017, 141:394-408.
    [17] Jingke Hong, Shen G Q, Feng Y, et al. Greenhouse gas emissions during the construction phase of a building:a case study in China[J]. Journal of Cleaner Production, 2015, 103:249-259.
    [18] Seo M S, Kim T, Hong G, et al. On-site measurements of CO2 emissions during the construction phase of a building complex[J]. Energies, 2016, 9(8):599.
    [19] 国家发展和改革委员会应对气候变化司. 2015年中国区域电网基准线排放因子[R]. 北京:国家发展和改革委员会, 2015.National Development and Reform Commission Climate Change Division. 2015 China regional power grid baseline emission factor[R]. Beijing:National Development and Reform Commission, 2015. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘贵文,杨浩,傅晏,毛超,徐鹏鹏,洪竞科,李凯健.信息物理融合下的建筑施工现场碳排放实时监测系统[J].重庆大学学报,2020,43(9):24-31.

复制
分享
文章指标
  • 点击次数:1250
  • 下载次数: 1011
  • HTML阅读次数: 1525
  • 引用次数: 0
历史
  • 收稿日期:2019-12-09
  • 在线发布日期: 2020-09-29
文章二维码