基于延迟时间模型的风电机组维修策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TK83

基金项目:

国家重点研发计划资助项目(2018YFB1501300);重庆市研究生科研创新项目(CYB16024)。


Maintenance strategy of wind turbine based on the delay time model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决目前风电机组故障维修不合理导致维修成本过高、运维效率低的问题,以多部件串联风电机组为对象展开维修策略研究:基于延迟时间理论将部件故障分为潜在故障和功能故障,在预防性检测的基础上推迟维修,提出一种机会维修方法。综合考虑备件物流、停机时间及维修成本等因素,建立了风电机组机会维修模型。结合风场实际故障数据,采用蒙特卡洛法求解该模型,探索了检测周期和推迟维修时间对风电机组可用度和维修成本的影响规律,结果表明,考虑推迟维修时的机会维修策略优于传统预防性维修,该模型求解得到的最佳方案能够将风电机组可用度提升至98%,更具有经济优势和工程应用价值。

    Abstract:

    In order to solve the problems of high maintenance cost of wind turbines and low efficiency of operation and maintenance resulting from unreasonable maintenance strategy, a research on maintenance strategies of a series connection system of wind turbines was carried out. The component fault was devided into potential fault and function fault based on the delay-time theory and a opportunistic maintenance strategy was proposed focusing on the preventive maintenance. A delay was made in the maintenance of components in search of maintenance opportunity. An opportunistic maintenance model for wind turbines was established with considerations of the influencing factors, like spare part logistics, downtime and maintenance costs. Using the field fault data, the Monte Carlo method was adopted to solve the proposed model and the influences of different inspection durations and different deferred maintenance time on the life-cycle availability and maintenance cost of wind turbines were explored. The results show that the opportunistic maintenance strategy considering deferred maintenance is superior to traditional preventive maintenance in cost-efficiency with engineering practice. With the optimal strategy obtained by the model proposed, the availability of wind turbine can rise up to 98%.

    参考文献
    相似文献
    引证文献
引用本文

李想,朱才朝,李垚,樊志鑫.基于延迟时间模型的风电机组维修策略[J].重庆大学学报,2020,43(10):20-28.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-11
  • 出版日期:
文章二维码