湿式离合器接合特性仿真与分析
作者:
中图分类号:

U270

基金项目:

国家自然科学基金资助项目(U1764259)。


Simulation and analysis of wet clutch engagement characteristics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究湿式离合器的接合特性,考虑摩擦副表面温度、相对速度、粗糙度以及载荷对摩擦系数的共同影响,基于流体动力润滑理论、粗糙表面弹性接触理论、吸附热理论以及传热学理论建立了湿式离合器接合过程数学模型。分别讨论了接合压力、摩擦副表面粗糙度、摩擦材料渗透性对接合过程中油膜厚度、相对角速度以及传递转矩的影响规律。结果表明:增大接合压力,转矩响应、相对角速度减小速度以及油膜厚度减小速度都会加快,接合时间缩短,最小油膜厚度减小;减小摩擦副表面粗糙度,转矩响应减慢,但相对角速度减小速度和油膜厚度减小速度都会加快,接合时间缩短,最小油膜厚度减小;增大摩擦材料渗透性,转矩响应和相对角速度减小速度以及油膜厚度减小速度都会加快,接合时间缩短,但最小油膜厚度变化较小。

    Abstract:

    In order to study the engagement characteristics of wet clutch, the mathematical model of wet clutch engagement process was established based on fluid lubrication theory, rough surface elastic contact theory, adsorption heat theory and heat transfer theory, with the combined effects of friction surface temperature, relative speed, roughness and load on the friction coefficient taken into consideration. The effects of engagement pressure, friction surface roughness, friction material permeability on oil film thickness, relative angular velocity and transfer torque were discussed respectively. The results show that with the increase of the engagement pressure, the torque response, the relative angular velocity reduction speed and the oil film thickness reduction speed are accelerated, but the engagement time is shortened and the minimum oil film thickness is reduced. With the reduction of the friction surface roughness, the torque response slows down, the relative angular velocity reduction speed and the oil film thickness reduction speed are accelerated, the engagement time is shortened, and the minimum oil film thickness is reduced. With the increase of the friction material permeability, the torque response, the relative angular velocity reduction speed and the oil film thickness reduction speed are accelerated, and again the engagement time is shortened, but the minimum oil film thickness barely changes.

    参考文献
    [1] 张恒, 李和言, 昌和, 等. 湿式多片离合器摩擦转矩衰减特性分析[J]. 哈尔滨工业大学学报, 2018, 50(7): 94-102.ZHANG Heng, LI Heyan, CHANG He, et al. Experimental study on attenuation characteristics of friction torque transferred by the wet multi-disc clutch[J]. Journal of Harbin Institute of Technology, 2018, 50(7): 94-102. (in Chinese)
    [2] Natsumeda S, Miyoshi T. Numerical simulation of engagement of paper based wet clutch facing[J]. Journal of Tribology, 1994, 116(2): 232-237.
    [3] Berger E J, Sadeghi F, Krousgrill C M. Finite element modeling of engagement of rough and grooved wet clutches[J]. Journal of Tribology, 1996, 118(1): 137-146.
    [4] Berger E J, Sadeghi F, Krousgrill C M. Analytical and numerical modeling of engagement of rough, permeable, grooved wet clutches[J]. Journal of Tribology, 1997, 119(1): 143-148.
    [5] Yang Y B, Lam R C, Fujii T. Prediction of torque response during the engagement of wet friction clutch[J]. SAE Transactions, 1998, 107(6): 1625-1635.
    [6] Davis C L, Sadeghi F, Krousgrill C M. A simplified approach to modeling thermal effects in wet clutch engagement: analytical and experimental comparison[J]. Journal of Tribology, 2000, 122(1): 110-118.
    [7] Marklund P, Mäki R, Larsson R, et al. Thermal influence on torque transfer of wet clutches in limited slip differential applications[J]. Tribology International, 2007, 40(5): 876-884.
    [8] 张志刚, 周晓军, 沈路, 等. 湿式离合器动态接合特性的仿真与试验[J]. 中国公路学报, 2010, 23(3): 115-120.ZHANG Zhigang, ZHOU Xiaojun, SHEN Lu, et al. Simulation and experiment on dynamic engagement characteristics of wet clutch[J]. China Journal of Highway and Transport, 2010, 23(3): 115-120. (in Chinese)
    [9] Jang J Y, Khonsari M M, Maki R. Three-dimensional thermohydrodynamic analysis of a wet clutch with consideration of grooved friction surfaces[J]. Journal of Tribology, 2011, 133(1): 0117031-0117042.
    [10] 陈漫, 马彪, 李国强, 等. 多片湿式离合器接合过程转矩特性研究[J]. 华中科技大学学报(自然科学版), 2014, 42(5): 34-39.CHEN Man, MA Biao, LI Guoqiang, et al. Study on torque characteristics of multi-plate wet clutches during engagement[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2014, 42(5): 34-39. (in Chinese)
    [11] 马彪, 李国强, 李和言, 等. 基于改进平均流量模型的离合器接合特性仿真[J]. 吉林大学学报(工学版), 2014, 44(6): 1557-1563.MA Biao, LI Guoqiang, LI Heyan, et al. Simulation of wet clutch engagement characteristics based on advanced average flow model[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1557-1563. (in Chinese)
    [12] Li W, Huang J, Fei J, et al. Simulation of the engagement of carbon fabric wet clutch: analytical and experimental comparison[J]. Tribology International, 2015, 90: 502-508.
    [13] 杨辰龙, 吴鹏辉, 商晓波, 等. 含沟槽湿式离合器接合特性数值与试验研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1225-1236.YANG Chenlong, WU Penghui, SHANG Xiaobo, et al. Simulation and experimental study of engagement process with groove consideration[J]. Journal of Zhejiang University(Engineering Science), 2019, 53(7): 1225-1236. (in Chinese)
    [14] 李乐, 李明洋, 王立勇. 湿式换挡离合器接合过程黏性转矩计算研究[J]. 润滑与密封, 2017, 42(12): 89-95.LI Le, LI Mingyang, WANG Liyong. Viscous torque calculation for engaging process of wet shifting clutch[J]. Lubrication Engineering, 2017, 42(12): 89-95. (in Chinese)
    [15] Patir N, Cheng H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 101(2): 220-229.
    [16] Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633.
    [17] Patir N. Effects of surface roughness on partial film lubrication using an average flow model based on numerical simulation[D]. Chicago: Northwestern University, 1975.
    [18] Rowe C N. Some aspects of the heat of adsorption in the function of a boundary lubricant[J]. A S L E Transactions, 1966, 9(1): 101-111.
    [19] Buyanovskii I A. Boundary lubrication by an adsorption layer[J]. Journal of Friction and Wear, 2010, 31(1): 33-47.
    [20] Wang W Z, Huang P. Mechanism of boundary lubrication under point contact[J]. Chinese Journal of Mechanical Engineering, 2006, 19(4): 618-621.
    [21] Timsit R S, Pelow C V. Shear strength and tribological properties of stearic acid films—Part I: on glass and aluminum-coated glass[J]. Journal of Tribology, 1992, 114(1): 150-158.
    [22] Timsit R S, Pelow C V. Shear strength and tribological properties of stearic acid films—Part Ⅱ: on gold-coated glass[J]. Journal of Tribology, 1992, 114(1): 159-166.
    [23] Zhu D, Wang Q. Effect of roughness orientation on the elastohydrodynamic lubrication film thickness[J]. Journal of Tribology, 2013, 135(3): 031501-031509.
    [24] 王慰祖, 黄平. 点接触边界润滑吸附膜计算模型[J]. 摩擦学学报, 2008, 28(3): 240-243.WANG Weizu, HUANG Ping. A numerical model of boundary lubrication under point contacts[J]. Tribology, 2008, 28(3): 240-243. (in Chinese)
    [25] 孙德志, 马先贵, 姚玉泉. 边界润滑及混合润滑条件下的摩擦系数[J]. 东北工学院学报, 1988, 9(3): 303-309.SUN Dezhi, MA Xiangui, YAO Yuquan. Friction coefficients under mixing and boundary lubrications[J]. Journal of Northeast University of Technology, 1988, 9(3): 303-309. (in Chinese)
    [26] 杨为, 陆国栋, 吕和生, 等. 湿式多片摩擦离合器对偶钢片热-机耦合分析[J]. 重庆大学学报, 2011, 34(9): 26-32.YANG Wei, LU Guodong, LV Hesheng, et al. Thermo-mechanical coupling analysis of dual-steel-disc of wet multi-disk clutch[J]. Journal of Chongqing University, 2011, 34(9): 26-32. (in Chinese)
    [27] 孙冬野, 胡丰宾, 邓涛, 等. 湿式多片离合器翘曲特性模拟与试验[J]. 重庆大学学报, 2010, 33(5): 1-6.SUN Dongye, HU Fengbin, DENG Tao, et al. Simulation and experiment for warp characteristic of wet multiple disc clutches[J]. Journal of Chongqing University, 2010, 33(5): 1-6. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王成,秦大同,吴邦治,方宏胜,程坤.湿式离合器接合特性仿真与分析[J].重庆大学学报,2020,43(10):38-51.

复制
分享
文章指标
  • 点击次数:610
  • 下载次数: 1246
  • HTML阅读次数: 613
  • 引用次数: 0
历史
  • 收稿日期:2020-05-14
  • 在线发布日期: 2020-11-11
文章二维码