School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, P. R. China;School of Electromechanical and Automobile Engineering, Huanggang Normal University, Huanggang, Hubei 438000, P. R. China 在期刊界中查找 在百度中查找 在本站中查找
In order to meet the needs of virtual experiment in engineering, a 3D stochastic road roughness modeling method using power spectral density function is studied. By using the road spectrum fitting formula of power function adopted in the national standard, the analytical expression of two-dimensional power spectrum of road surface is derived, which avoids the parameter estimation problem of rational function method. The process of generating 3D stochastic pavement by two-dimensional inverse Fourier transform is established, and the E-grade pavement in the national standard is simulated by the performance requirements of a certain automobile vibration system. The power spectrum of the simulated pavement is estimated by using periodogram method and AR parameter model method respectively. The estimated results show that the simulated pavement spectrum is highly consistent with the standard pavement spectrum. The method based on two-dimensional inverse discrete Fourier transform is not only accurate and fast, but also has strong practicability.
[1] 中华人民共和国国家质量监督检验检疫总局. 机械振动道路路面谱测量数据报告: GB/T 7031-2005[S]. 北京:中国标准出版社,2005.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Mechanical vibration-road surface profiles-reporting of measured data: GB/T 7031-2005[S]. Beijing: China Standard Press, 2005.(in Chinese)
[2] Au F T K, Cheng Y S, Cheung Y K. Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridges on impact due to moving vehicles[J]. Computers & Structures, 2001, 79(8): 853-872.
[3] Schiehlen W, Hu B. Spectral simulation and shock absorber identification[J]. International Journal of Non-Linear Mechanics, 2003, 38(2): 161-171.
[4] Grigoriu M. On the spectral representation method in simulation[J]. Probabilistic Engineering Mechanics, 1993, 8(2): 75-90.
[5] Zhang Y L. Time domain model of road irregularities simulated using the harmony superposition method[J]. Transactions of The Chinese Society of Agricultural Engineering, 2003, 19(6): 32-35.
[6] Wang X, Zhao J B, Wang J Z. An improved road roughness simulation method based on trigonometric series method[J]. Applied Mechanics and Materials, 2014, 513/514/515/516/517: 3277-3282.
[7] Zhang Y L, Zhang J F. Numerical simulation of stochastic road process using white noise filtration[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 363-372.
[8] Heath A N. Application of the isotropic road roughness assumption[J]. Journal of Sound and Vibration, 1987, 115(1): 131-144.
[9] 刘献栋, 邓志党, 高峰. 基于逆变换的路面不平度仿真研究[J]. 中国公路学报, 2005, 18(1): 122-126.LIU Xiandong, DENG Zhidang, GAO Feng. Study of simulation of road roughness based on inverse transform[J]. China Journal of Highway and Transport, 2005, 18(1): 122-126.(in Chinese)
[10] 张亚欧, 马吉盛, 吴大林, 等. 基于Fourier逆变换法的路面不平度模拟[J]. 河北工业大学学报, 2005, 34(6): 66-69.ZHANG Yaou, MA Jisheng, WU Dalin, et al. Modeling and simulation of road roughness based on the method of reverse Fourier[J]. Journal of Hebei University of Technology, 2005, 34(6): 66-69.(in Chinese)
[11] 张永林, 李诗龙, 杨建林. 汽车道路随机不平顺的时序模型重构[J]. 武汉理工大学学报(交通科学与工程版), 2005, 29(6): 883-886.ZHANG Yonglin, LI Shilong, YANG Jianlin. Time series model regeneration of random road undulation input to vehicles[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2005, 29(6): 883-886.(in Chinese)
[12] 朱茂桃, 刘建, 王国林. 路面不平度重构的AR模型阶数确定方法研究[J]. 公路交通科技, 2010, 27(7): 25-28, 51.ZHU Maotao, LIU Jian, WANG Guolin. Research on method of determining order of AR model for road roughness reconstruction[J]. Journal of Highway and Transportation Research and Development, 2010, 27(7): 25-28, 51.(in Chinese)
[13] 彭佳, 何杰, 李旭宏, 等. 路面不平度随机激励时域模型的仿真比较与评价[J]. 解放军理工大学学报(自然科学版), 2009, 10(1): 77-82.PENG Jia, HE Jie, LI Xuhong, et al. Simulation comparison and evaluation of common time domain models under road irregularity excitation[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2009, 10(1): 77-82.(in Chinese)
[14] 吴参, 王维锐, 陈颖, 等. 三维路面谱的仿真建模与验证[J]. 浙江大学学报(工学版), 2009(10): 1935-1938. WU Can, WANG Weirui, CHEN Ying, et al. Simulation and validation of three-dimensional road surface spectrum[J]. Journal of Zhejiang University(Engineering Science), 2009(10): 1935-1938.(in Chinese)
[15] 彭佳,何杰,丛颖,等. 三维随机路面通用模型建立与仿真[J]. 农业机械学报, 2009, 40(3): 1-4, 25.PENG Jia, HE Jie, CONG Ying, et al. Modeling and simulation of general 3D virtual stochastic road model[J].Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 1-4, 25.(in Chinese)
[16] 夏均忠, 马宗坡, 白云川, 等. 路面不平度激励模型研究现状[J]. 噪声与振动控制, 2012, 32(5): 1-5, 41.XIA Junzhong, MA Zongpo, BAI Yunchuan, et al. State of the research on model for road roughness excitation[J]. Noise and Vibration Control, 2012, 32(5): 1-5, 41.(in Chinese)
[17] 唐光武,成思源. 二维路面不平度的时域模型及计算机仿真[J]. 重庆大学学报(自然科学版), 2000, 23(6): 31-34.TANG Guangwu, CHENG Siyuan. Time domain model of 2-D road roughness and numerical simulation[J].Journal of Chongqing University(Natural Science Edition),2000, 23(6): 31-34. (in Chinese)
[18] 罗竹辉, 魏燕定, 周晓军, 等. 随机激励三维路面空间域模型建模与仿真[J]. 振动与冲击, 2012, 31(21): 68-72.LUO Zhuhui, WEI Yanding, ZHOU Xiaojun, et al. 3-D random excitation road surface modeling and simulation[J]. Journal of Vibration and Shock, 2012, 31(21): 68-72.(in Chinese)